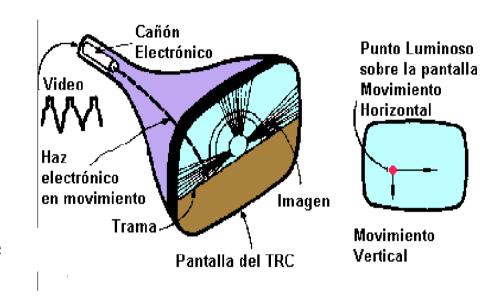
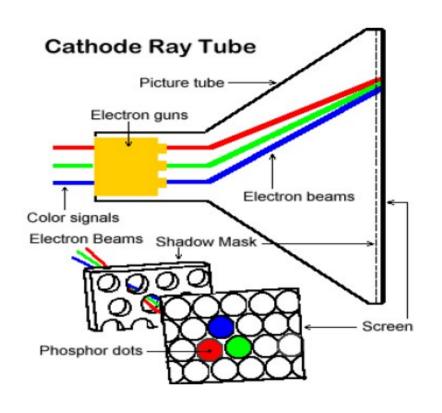
Periféricos

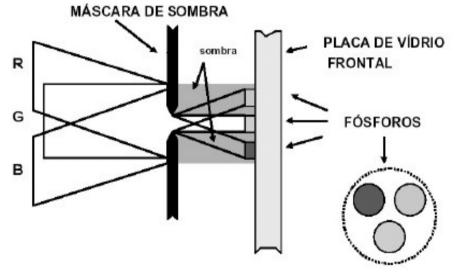

- Conexión al ordenador
 - Slot (BUS)
 - ISA
 - EISA
 - VESA
 - PCI, PCI-X, PCI-E
 - AGP
 - Puerto
 - Serie
 - Paralelo
 - Otros (juegos, VGA)

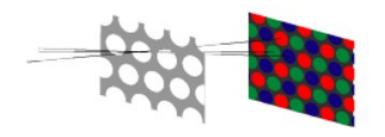
- Periféricos de salida
 - Monitores
 - Tarjetas de video
 - Impresoras
- Periféricos de entrada
 - Teclados
 - Ratón
 - Digitalizador
 - Escáner
 - Detectores de código de barras
 - Lectores de tarjetas
 - Lápiz óptico
 - Pantalla tactil

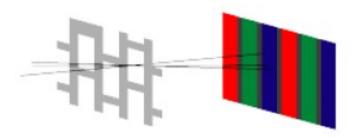
- Periféricos de entrada/salida (almacenamiento)
 - Disquetes
 - Discos duros
 - Unidades zip
 - LS-120
 - EZ-Flyer
 - Magneto-ópticos
 - CD-ROM
 - DVD
 - Unidades JAZZ
 - SyJet
 - Cintas

Monitores


- Funcionamiento
 - TRC
 - Cátodo generador de haz de electrones
 - Rejilla que desvía el haz -> barrido
 - Material fluorescente en la pantalla


- Características


- Frecuencia de refresco (barrido vertical) > 50Hz
- Resolución = nº puntos HxV
- Tamaño del punto (dot pitch) = 0'25 0'28mm
- Entrelazado
- Tamaño de la pantalla (pulgadas)


Televisión en color

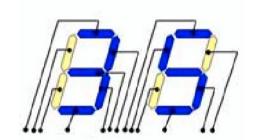
Detalle de la máscara de sombra

Otras tecnologías (no CRT)

Basadas en LCD

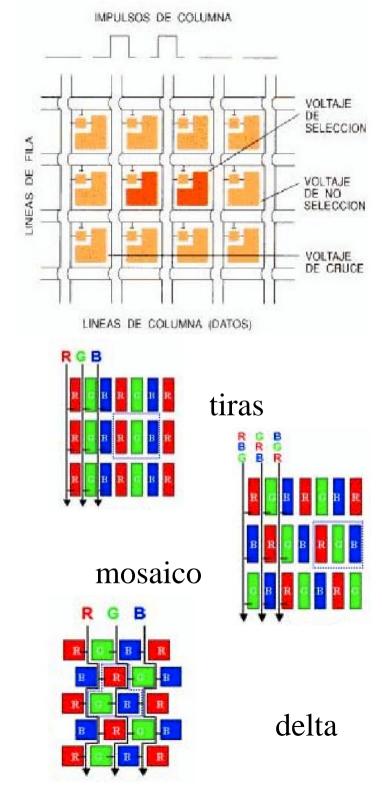
• No emite radiaciones electromagnéticas

- Punto Punto iluminado apagado
- En función de la tensión aplicada cambia el ángulo de polarización -> usado junto con filtros polarizadores => la luz pasa/no pasa
- La parte inferior puede ser un espejo o una fuente activa de luz

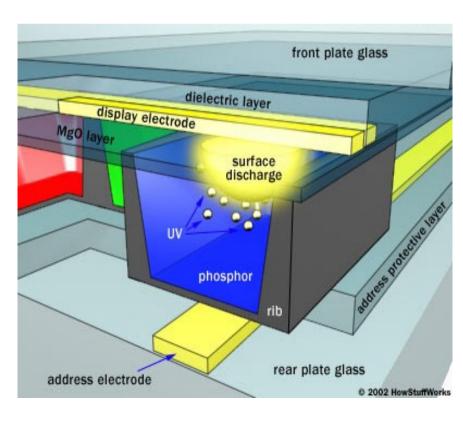

- Tipos de cristales líquidos

- Twisted Nematic (TN)
 - Giro de 90°
 - La luz pasa/nos pasa => estados encendido/apagado.
 - Muy barato -> uso en calculadoras, relojes, etc.

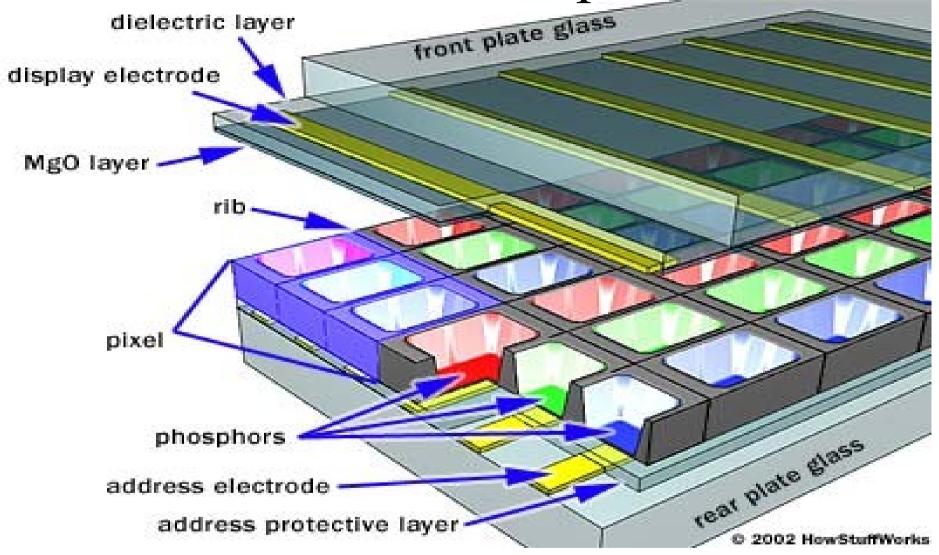
• Super Twisted Nematics (STN)


- Angulos de giro entre 180° y 270° en función de la tensión aplicada
- La luz pasa/no pasa o pasa en parte => distintos niveles de gris
- Mayor contraste
- apagado=tono azulado, encendido=tono amarillento => no válido para LCD color

- Dual Super Twisted Nematics (DSTN)
 - Dos capas STN con giros en sentido contrario
 - Se consiguen negros y blancos puros
 - Aumenta el contraste hasta 1:400
 - Muy "direccionales" -> el contraste cae muy rápido con el ángulo de visión
- Control del cristal ->direccionamiento
 - Direccionamiento directo
 - Conexión individual para cada elemento
 - Sólo para muy pocos elementos (p.e. 7 seg.)


- Matriz pasiva
 - Dos capas (superior/inferior) de electrodos transparentes -> filas/columnas
 - Barrido de filas y columnas => se activa cada pixel
 - El cristal actúa como un condensador => Mantiene la carga entre barridos / es lento en carga (LCD "lento")

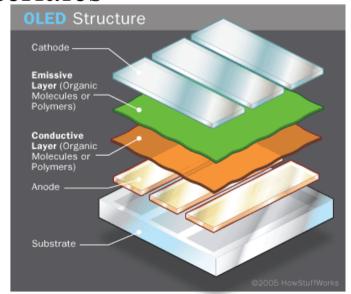
- Matriz Activa (TFT)
 - Direccionamiento sólo por abajo
 - Cada pixel lleva un transistor TFT y un condensador => almacena la tensión de control
 - Direccionamiento fila/columna => activa transistor
 - Mucho más rápido que matriz pasiva
 - TFT (Thin Film Transistor) = capa no del todo transparente => necesita retroiluminación
- LCD color
 - Tres celdas por cada pixel
 - Distintas formas de colocarlas
 - Tiras -> más barato, menor calidad
 - Mosaico/delta -> más caro, más calidad



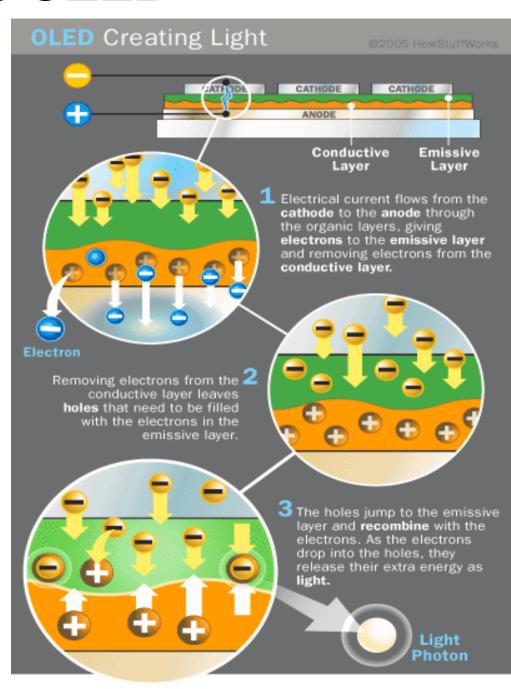
Monitores de plasma

- Monitores híbridos entre CRT y LCD
- Plasma
 - Gas (xeón / neón)
 - Corriente eléctrica -> se ioniza el gas
 - Se producen muchos choques -> emisión de fotones ultravioleta
- La celda básica
 - Rellena de plasma
 - Excitación por electrodos transparentes fila/columna
 - Alto voltaje -> emisión de fotones UV
 - Fotones UV excitan fósforo

Estructura de la pantalla


- Pixel = 3 celdas -> fósforos R G B
- Control de V => control de intensidad de celda
- Celda excitada -> permanece encendida -> barrido periódico

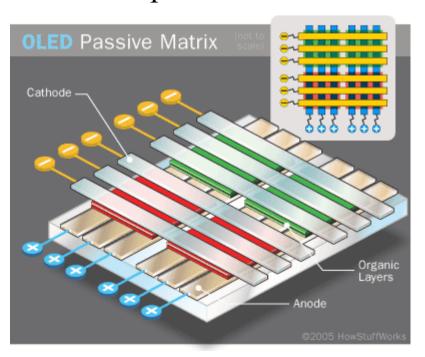
Monitores OLED


OLED (Organic LED)

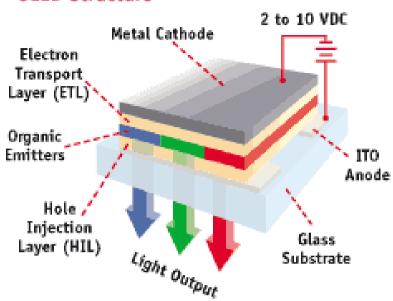
- Orgánicos en vez de si, GaAs, etc.
- Mucho mayor rendimiento
- Respuesta a la tensión casi lineal
- Son componentes de película fina.

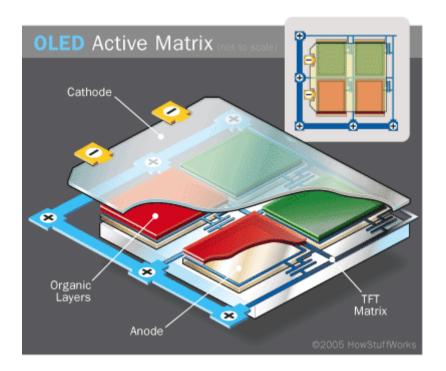
Materiales

- Anchura en torno a 500nm
- substrato cristal/plástico -> flexible



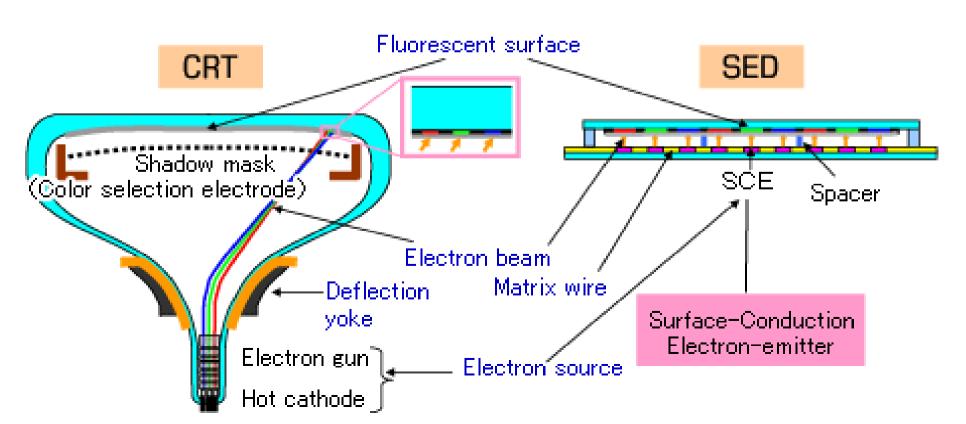
• Celda de color


- Componentes de los tres colores
- Excitación baja tensión (2-10V)
- Emite luz -> no necesita retroiluminación
- Angulo de visión amplio (como CRT)


Barrido

- Estructura en matriz
- Matriz pasiva / Matriz activa -> transistores

OLED Structure

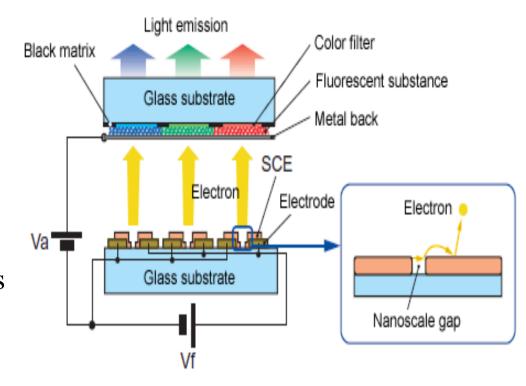


Monitores SED

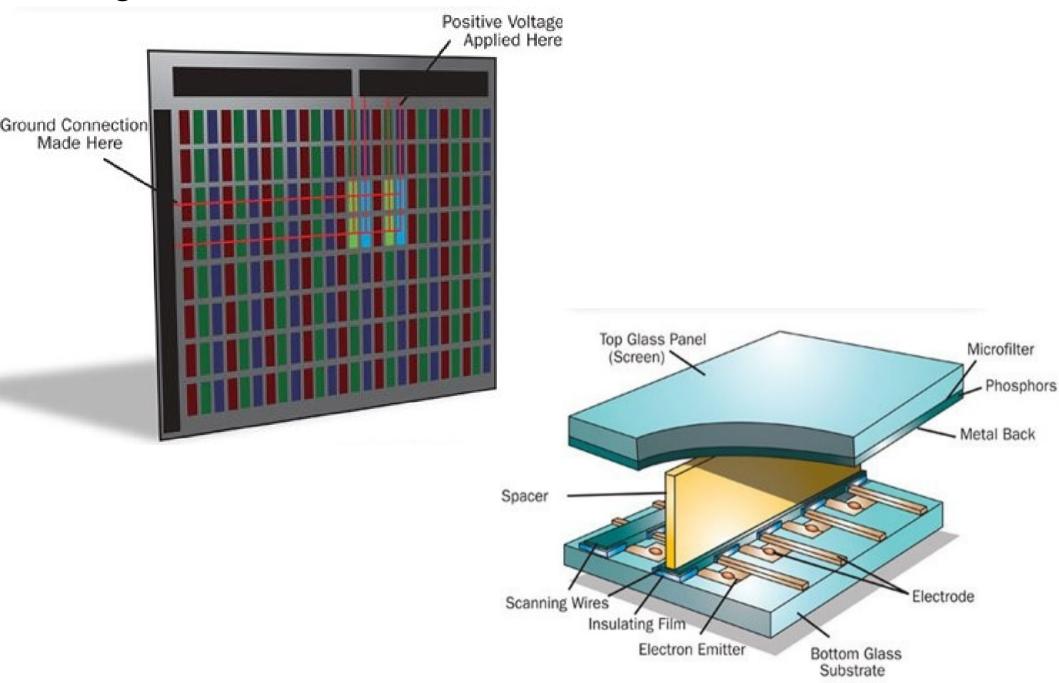
(Surface Conduction Electron Emitter Display)

- En desarrollo
 - Tecnología Canon/Toshiba
 - Planteado inicio de fabricación Octubre 2006 / Comercialización mediados o finales 2007

Structural comparison between CRT and SED

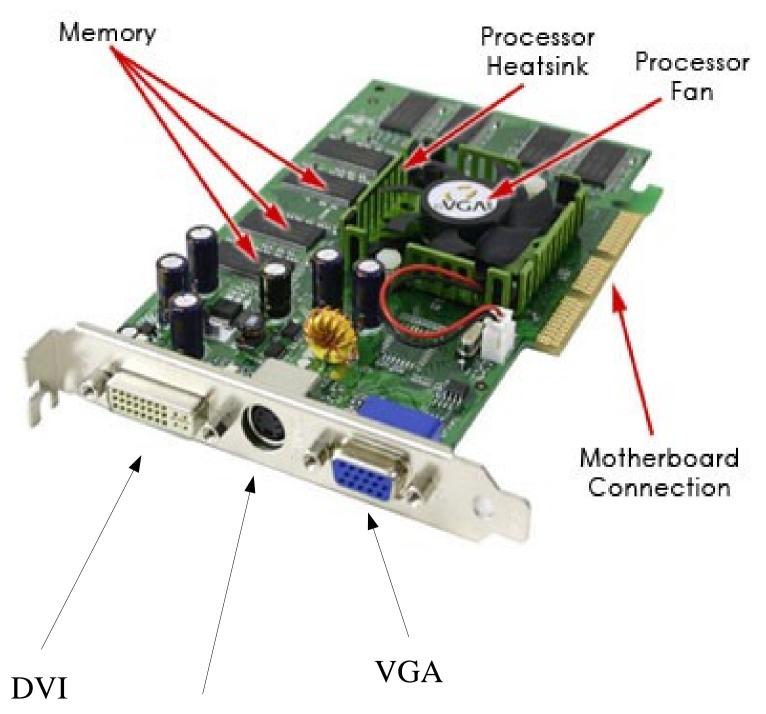


Celda básica


- Similar a CRT -> "mini-tubos"(Electron Emission Element)
- Vf(10V) -> genera electrones
- Vr (10KV) -> dispara los electrones
- Fósforo -> luz

Características

- Ratios de contraste: 50.000:1 (como CRT. Típico TFT 500:1)
- Tiempos de respuesta 1ms (típico TFT 8ms)
- Brillo 450 cd/m2 (como CRT. Típico TFT 300)
- Consumo por debajo de CRT y TFT
- Pensado para grandes tamaños (40" y mayores)



• Organización en matriz

Tarjetas de vídeo

- Funcionamiento
 - Interfaz entre el micro y el monitor
 - Genera señales de sincronismo y de color
 - Incorpora:
 - Procesador gráfico
 - Controla el CRT
 - Genera caracteres
 - Ejecuta ordenes gráficas
 - RAMDAC (conversor analógico-digital)
 - Memoria de video
- Conectores -> ISA, VESA, PCI, AGP, PCI-E

ViVo (Video In Video Out)

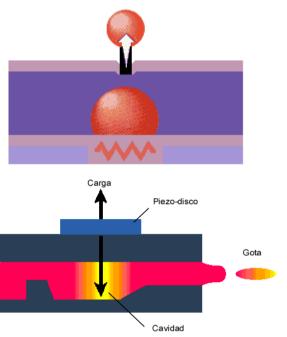
• Tipos:

- MDA -> sólo texto monocromo
- $CGA \rightarrow 2/4 \text{ colores } 320x200 \text{ y } 640x200$
- Hércules -> escala de grises 720x348
- EGA -> 16 colores hasta 640x350
- VGA -> 256 colores (8bits) 640x480
- SVGA -> más colores, más resolución
 - 8 bits (256 colores), 16 bits (65.536 colores), 24 bits (16.777.216 colores), 32 bits (4.294.967.296)
 - Resoluciones 640x480, 800x600 (SVGA), 1024x768(XGA), 1280x1024(SXGA), 1600x1200(UXGA).....
 - Tamaño memoria = resolución x nºbits/8

Impresoras

- Clasificación
 - Por la forma de imprimir
 - De impacto
 - Sin impacto
 - Por la unidad de impresión
 - De caracteres
 - De líneas
 - De páginas
- Tipos
 - Matriciales
 - De inyección
 - Laser
 - Otras: margarita, térmicas, etc

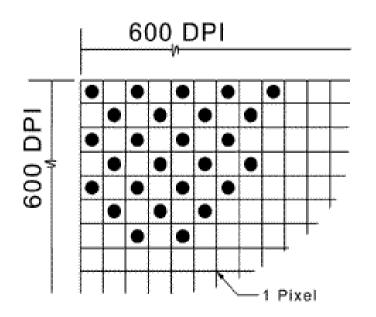
Características de las impresoras

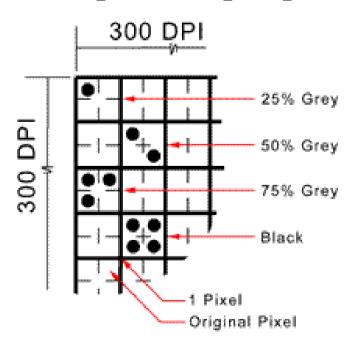

- Generación del color
 - Suma aditiva: RGB
 - Suma substractiva: CMYK
- Lenguajes descriptivos
 - PostScript (Adobe) -> independiente del dispositivo
 - PCL (HP) -> no es totalmente independiente
 - GDI (Windows) -> parte del trabajo lo realiza el sistema operativo (Winprinters)

Impresoras matriciales

- Cabezal de impresión con una matriz de agujas donde se forma el carácter a imprimir
- Imprimen mediante el impacto del las agujas sobre una cinta con tinta
- Velocidad baja (hasta 1000cps en baja calidad)
- Calidad
 - 9 (9x7) agujas baja
 - 24 (24x7) agujas media (hasta 360 ppp)
- Ruidosas
- Color con varias cintas
- Impresión en papel autocopiativo y papel contínuo

Impresoras de inyección

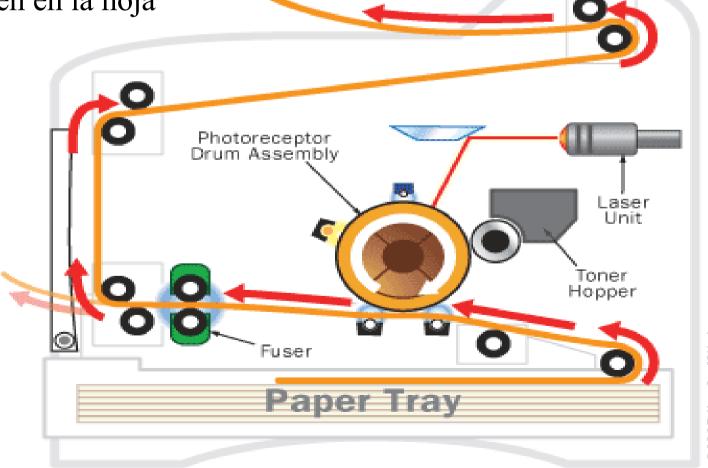

- Inyectores -> "disparan" pequeñas gotas de tinta contra el papel.
 - Térmicos (HP) -> presión a base de calor
 - Piezoeléctricos -> presión a base de impulsos eléctricos => seca más rápido y no le afecta el calor

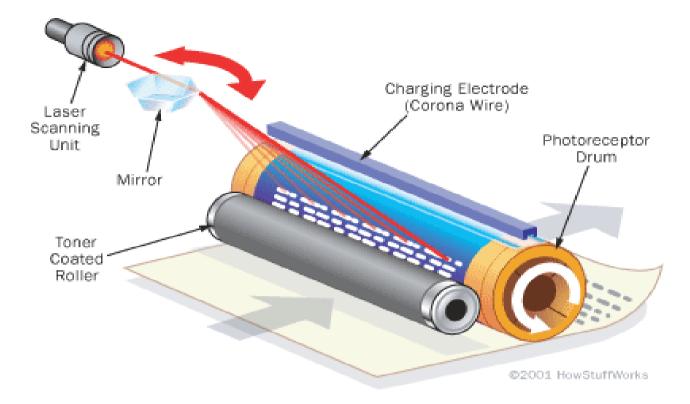


- Silenciosas
- Velocidad media (hasta 22ppm)
- Calidad media (hasta 5760ppp teóricos) -> se reduce con la colocación de los puntos sobre el papel (depende de el cabezal)

Impresoras de inyección

- Impresión en color
 - 1 cartucho de negro
 - 1 cartucho de color (CMY)
 - La burbuja pinta/no pinta de cada color
 - Varios puntos cercanos forman el "punto" (dithering)
 - -> menor resolución (hasta 8x8 puntos "por punto")




Impresoras laser

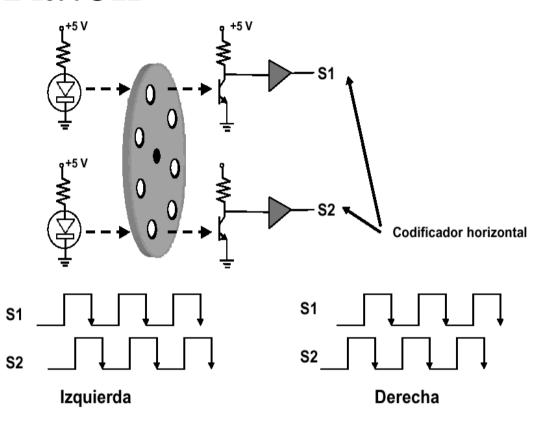
• Tecnología:

- Laser de baja potencia -> imagen electrostática sobre el tambor (gran precisión)
- Toner (tinta pulverizada de carbón) -> se adhiere al tambor formando la imagen
 Consenta income la in
- Se forma la imagen en la hoja
- Se fija por calor

@2005 HowStuffWorks

- Impresión por hojas a alta velocidad (hasta 38ppm)
- Silenciosas.
- Alta resolución (1200ppp reales)
- Impresión en grises o color (4 toner CMYK)

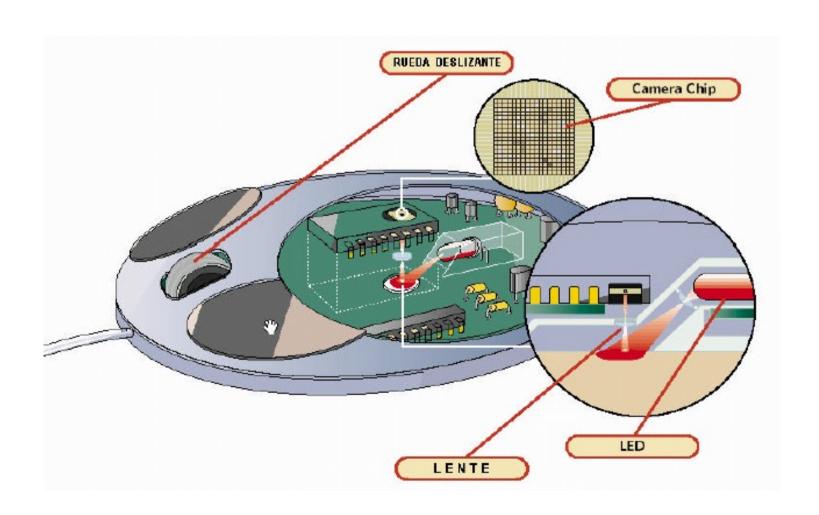
Teclados


- Tipos de pulsadores
 - De impacto -> cierre de un circuito
 - Sin impacto -> variación de capacidad o efecto Hall
- Interconexión de pulsadores -> matriz (filas/columnas)
- Interfaz física:
 - Conectores DIN o mini-DIN. 5 líneas: reloj, datos, masa y alimentación, reset
 - Transmisión bidireccional asíncrona: 1 bit de inicio, 8 de datos y 1 bit de parada.
- Layout de teclado:
 - Normal: QWERTY
 - Otros, pe. DVORAK-DEALEY

• Interfaz lógica

- Genera códigos de barido de 8 bits
 - Pulsar tecla: MSB=0
 - Soltar tecla: LSB=1
- Cada vez que se pulsa o libera una tecla:
 - Envía el código de barrido al puerto 60h
 - Activa la interrupción 9H
- Estructura (102 teclas)
 - Teclas de función
 - Teclas especiales (ALT, MAYS...)
 - Teclas normales
 - Teclado numérico
 - Teclas de movimiento del cursor

Ratón

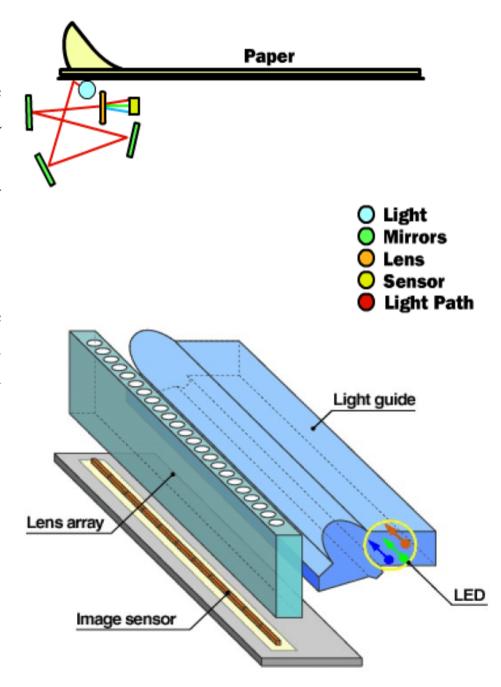

- Tipos:
 - Optomecánico
 - Suciedad
 - Variante: trackball

- Óptico
 - Alfombrilla especial
 - Dos diodos emisores de luz más dos fotodetectores
 - Rejilla reflectante con lineas azules y negras

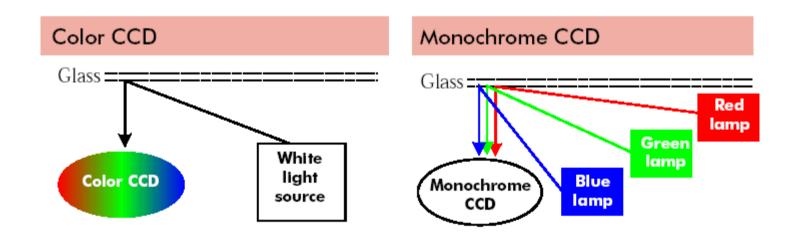
- Intellimouse

• No necesita alfombrilla especial: cámara fotografica que fotografía la superficie y compara -> uProcesador

- Portátiles:


- Trackpoint= sensor de precisión en el centro del teclado
- Touchpad = panel que detecta la capacitancia del dedo -> posición absoluta
- Interfaz del ratón (serie)
 - Serie -> RS232
 - PS/2 conector mini-din
- Protocolo -> microsoft / mouse systems (y otros)

Digitalizador


- Lápiz sobre tableta digitalizadora
- Mide posición absoluta
- Distintos tipos: contactos, electromagnético, ultrasonidos, etc.

Escáner

- Sensor -> conversión luz-electricidad
 - CCD
 - Sensores en un circuito integrado de tamaño reducido y muy buena resolución
 - Llevan un conjunto de lentes para dirigir la imagen hacia el CCD
 - CIS
 - Luz generada por un array de leds
 - Luz captada por una linea de fotosensores que se mueve junto con los leds, casi en contacto con la imagen => no hay lentes.
 - Tecnología en desarrollo (+barata calidad)
- Motor -> deslaza el sensor -> barrido
- Fuente de iluminación
- ADC -> digitaliza

- Escáner de color:
 - Tres pasadas -> lento
 - Una pasada
 - Se ilumina cada línea con uno de los tres colores básicos
 - Tres filas de CCD

- Resolución (ppp dpi)
 - Horizontal -> depende del nº de sensores
 - Vertical -> depende del avance del motor
 - Interpolada -> cálculo por interpolación

- Tipos

- Sobremesa (normalmente A4)
- Tambor (rodillo)
- Mano
- Diapositivas

- Interfaz física:

- Puerto paralelo ECP EPP 1MB/s
- SCSI 5-80MB/s
- USB 1'5MB/s o hasta 60MB/s (USB2.0)

Interfaz lógica -> TWAIN

- Interfaz para los programas
- Independiente del hardware

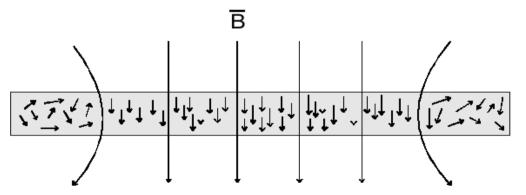
- Detectores de código de barras
 - Código de barras
 - Estándar europeo EAN (13 y 8 caracteres)
 - Identificación de país, empresa, producto y carácter de chequeo
 - Lineas de ancho simple, doble y triple
 - Elementos
 - Fuente de luz
 - Fotodetector
 - Barrido
 - Detectar ancho simple (dos líneas simples por lado)
 - Detectar anchos relativos
 - Verificar si se ha leído al revés
 - Comprobar carácter de chequeo

- Lectores de tarjetas
 - Banda magnetica = cinta magnética pegada
 - Alta coercitividad/ baja densidad de grabación
 - Lectores: de pasada, de inserción, motorizados

• Lápiz óptico

- Detecta la posición del haz de electrones que barre la pantalla
- Interfaz incluida en la tarjeta de video

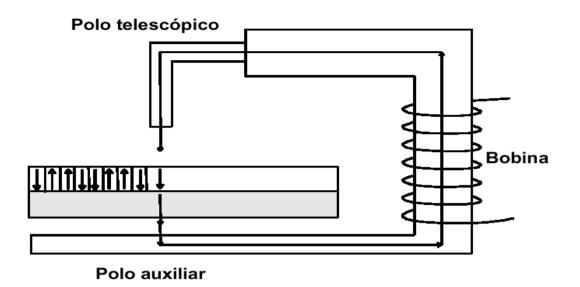
Pantalla táctil


- Baja resolución
- Tipos:
 - Fotosensores -> leds-fotosensores en filas/columas
 - De contactos -> malla transparente en la pantalla (matriz tipo teclado)

Sistemas de almacenamiento externo

• Almacenamiento magnético

- Material magnetizable (óxidos o metales) sobre un soporte


(a) Dipolos (imanes) orientados al azar

(b) Aplicación de un campo magnético

- Creación de dominios de polarización inversa

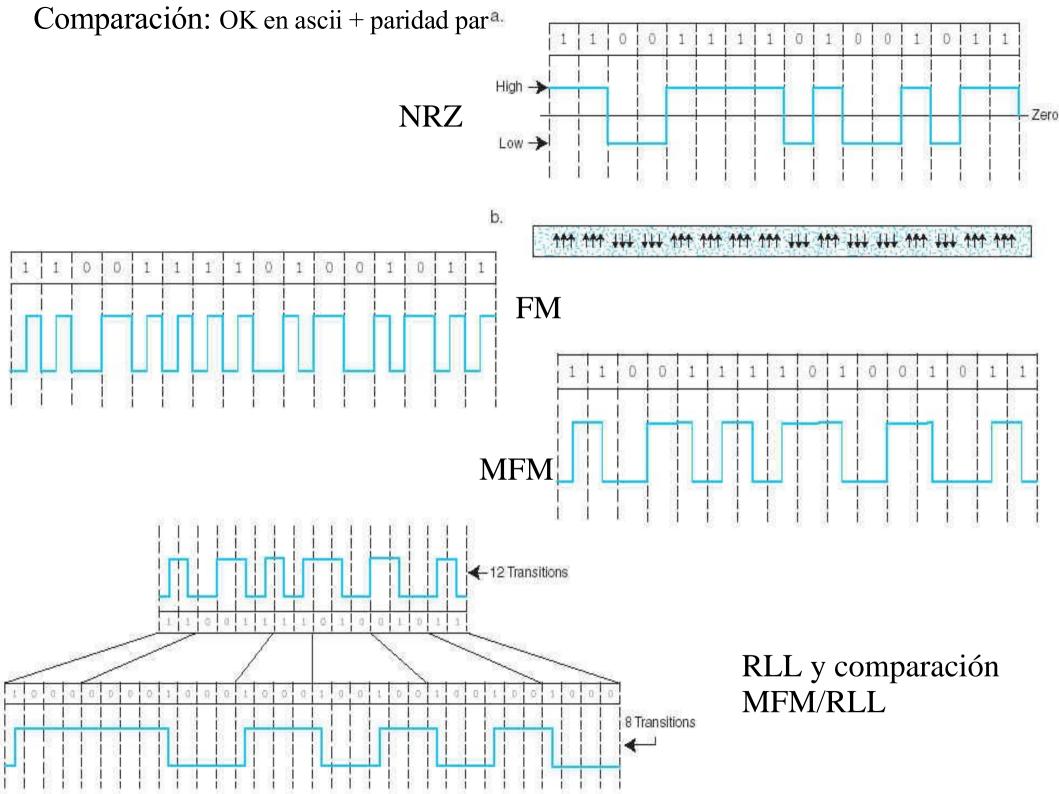
- Escritura: forzando corriente en la bobina -> campo magnético -> cambio en la orientación
- Lectura: movimiento de la película = cambio de polarización -> pulso de corriente

Codificación

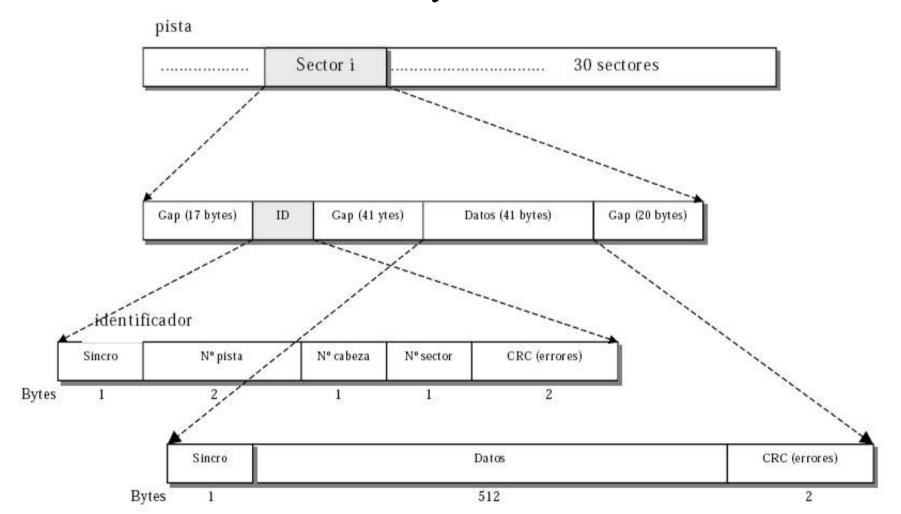
- RZ

- Grabación por pulsos de corriente + y -
- Diferencia 0 y 1 (polarización + y -)
- Incluye el reloj
- Incluye zonas sin polarizar

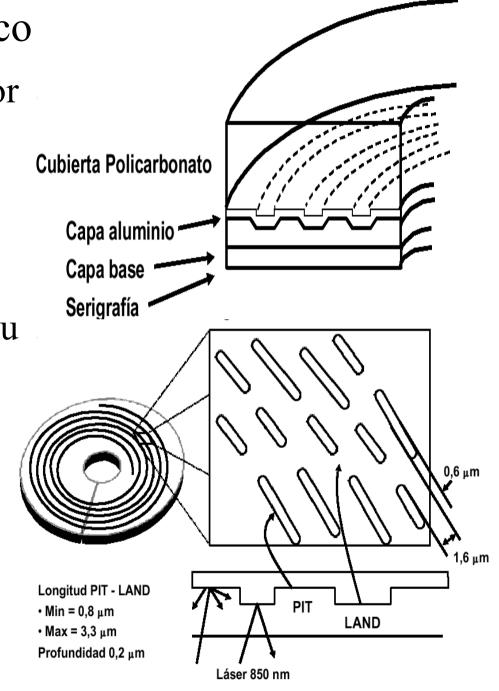
- NRZ

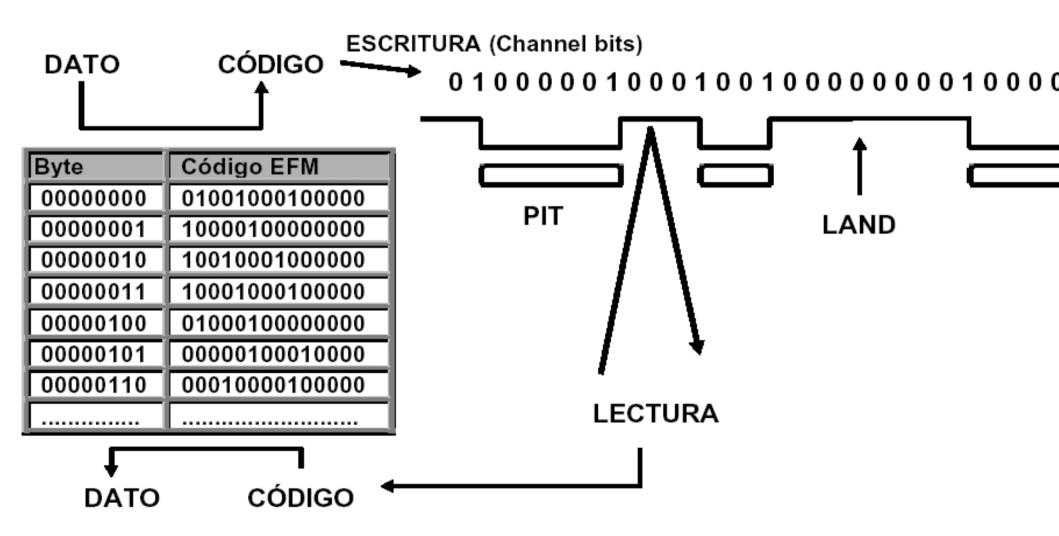

- Elimina las zonas sin polarizar
- Da señal sólo para cambios (0 a 1 y 1 a 0)
- Necesita un reloj externo. No se detecta pérdida de sincronismo
- Densidad doble (una transición por bit)

- NRZI


- Señal a mitad del bit sólo para los 1
- Los 0 sin transición
- Elimina el problema de reloj para cadenas de 1 pero no para cadenas de 0

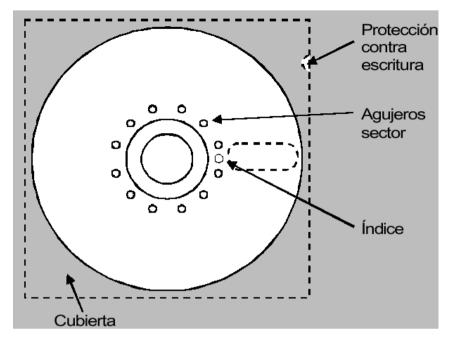
- FM
 - 0 = 1 cambio de polarización en el tiempo de bit
 - 1 = 2 cambios de polarización
 - Incluye el reloj, pero ½ de densidad de grabación que NRZ (dos transiciones por bit)
- MFM: variante de FM
 - 1=transición en medio de la celda
 - Transición al principio de la celda si el dato es 0 y en la celda anterior no hubo transición
 - Doble densidad (una transición por bit)
- RLL
 - Transmisión de varios bits sin retorno a cero
 - Bits en paquetes
 - Asegura transiciones (reloj)
 - Aumento de la densidad de grabación (50% mejor que MFM) -> menos cambios de flujo por pulgada, que es la limitación del dispositivo.

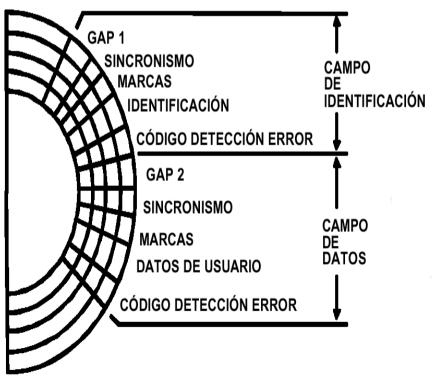

Character Bit Pattern	RLL(2, 7) Code
10	0100
11	1000
000	000100
010	100100
011	001000
0010	00100100
0011	00001000


- Agrupamiento de los bits
 - Bits agrupados en frames
 - Frames agrupados en sectores
 - Los sectores incluyen información de detección y corrección de errores y sincronismo

- Almacenamiento óptico
 - Lectura y escritura por laser
 - Lectura: iluminar y detectar luz reflejada
 - Escritura: alterar el medio para cambiar su reflexión
 - Codificación
 - 0 = no transición
 - 1 = transición
 - Codificación EFM

Código EFM = Eight To Fourteen Modulation


Mínimo 3 ceros seguidos Máximo 11 ceros seguidos DVD \rightarrow EFMPlus = 8 a 16


- Almacenamiento magneto-óptico
 - Medio magnético muy coercitivo (difícil de magnetizar)
 - Escritura:
 - Se calienta la zona con láser -> desciende la coercitividad
 - Borrado y escritura magnética
 - Lectura
 - Según la polarización magnética cambia la reflexión
 - Lectura óptica
 - Inmunidad frente a campos magnéticos, polvo, etc. hasta límites razonables

• Formato en discos

- Formato físico
 - Cada plato dividido en pistas
 - Cada pista en sectores
 - Formato HW: el disco tiene marcas de comienzo de cada sector
 - Formato SW: el disco solo tien marcas de inicio de pista
- Formato lógico a bajo nivel
 - División en sectores
 - GAPS = info.

 Direccionamiento
 - Campos sincronismo
 - Por sector: cabecera, CRC y sincronismo

Tipos de dispositivos de almacenamiento

Disquetes

- Varios formatos: 51/4" 31/2" DD y HD y de
- 2 caras -> dos cabezas
- Cabezas en contacto con la superficie
- Giro lento (300rpm) sólo en lectura/escritura
- Transferencia 45KB/s
- Codificación MFM

• Discos duros-> estructura Winchester:

- Velocidad angular constante (giran continuamente)
- La cabeza flota sobre la superficie
- Cerrador herméticamente
- Más de un plato -> varias cabezas
- Dividido en cilindros

Unidades ZIP

- Lectura y escritura magnética
- Marcas detectables ópticamente en una cara -> posicionamiento de las cabezas mediante laser
- Densidad de grabación alta
- Tiempos de acceso 29ms
- Velocidad 2MB/s
- Capacidad 100MB / 250MB

• LS120 (Superdisk)

- Formato 3½" -> compatible disquetes
- Tecnología similar a zip
- Tiempos de acceso 70ms
- Velocidad 1MB/s
- Capacidad 120MB

- EZ-Flyer (SyQuest)
 - Estructura Winchester (disco duro extraible)
 - Tiempo de acceso 20ms
 - Velocidad 2MB/s
- Magneto-ópticos
 - MO 3½"
 - Capacidad hasta 640MB
 - Lectura 2'5MB/s
 - Escritura 1MB/s
 - Tiempo de acceso 40ms
 - MO 51/4 "
 - Capacidad hasta 4'6GB
 - Lectura 3MB/s
 - Escritura 1'5MB/s

• CD-ROM

- Tecnología óptica -> láser 780nm (infrarrojos)
- Tipos
 - CD-ROM -> grabado por máscara
 - CD-R -> laser de mayor potencia -> altera el material (permanentemente)
 - CD-RW
 - Material con propiedades especiales:
 - Enfriamiento lento -> cristalino (refleja la luz)
 - Enfiramiénto rápido -> amorfo (dispersa la luz)
 - Grabable muchas veces
- Unidades lectoras y grabadoras
- Velocidades:
 - CD estándar 150KB/s
 - Velocidades x52 en lectura y x12 en escritura

DVD

- Dos tamaños: 8 cm y 12cm
- Misma tecnología que CD, pero:
 - Láser 650nm (rojo)
 - Mayor densidad de grabación -> pit y land más pequeños
 - Dos caras / Doble capa (dos láser distinta potencia). en desarrollo versiones multicapa (hasta 10 capas)

- Tipos:

- DVD-ROM y DVD-R -> análogo a CD-ROM/ CD-R
- DVD-RAM -> Panasonic, Hitachi y Toshiba 1998. Incompatible con lectores DVD-ROM. Discos de dos caras con 2,6 o 4,7GB/cara
- DVD-RW -> Pioneer 1999. 4.7GB por cara y capa
- DVD+RW -> muchas empresas. Formato compatible con DVD-ROM y DVD-VIDEO. 4.7GB por capa y cara.
- Capacidad, 1'4GB / 17GB

HD DVD y Blue-Ray

- Características comunes
 - Tecnología "blue-ray" -> láser 405nm (azul)
 - Mayor densidad de información
 - Tamaños 12 y 8cm
 - HD DVD compatible por formato CD/DVD, Blue Ray "ompatible" por soporte del reproductor
 - Soporte DRM
 - Control de contenidos -> combinación software con hardware especifico denominado "Trusted Computing"
 - Necesidad de tener unas claves (licencias) para poder usar contenidos (por ejemplo, reproducir, copiar, etc.)
 - Limita los dispositivos en los que se puede reproducir o incluso el número de veces, así como el número de copias en el caso de que estén permitidas.
 - El dispositivo se conecta con el proveedor de la obra que controla que se puede hacer o no con esos contenidos.
 - El DRM se copia con los contenidos.
 - Guerra comercial por imponerse -> similar VHS/Beta

- soporte para video en 50GB
 - 9 horas de video de alta definición-> 1920×1080 (entrelazado) o 1280×720 (no entrelazado)
 - 23 horas de video estándar (768x576 para PAL -no se usan todas las 625 lineas-, 720x480 para NTSC)
 - Aspecto 16:9, 50 imágenes por segundo (el doble) para PAL, 60 para NTSC.
 - Sonido en calidad cercana a CD
 - Compresión MPEG-2, H.264 o VC1

- Blue-Ray

- Propuesto por la BDA (Blue-Ray Disc Asociation)
 - Compañías "técnicas": Sony, Philips, Sun, Apple, HP, Dell, Samsung, Hitachi, etc.
 - Compañías "de contenidos": Disney, Warner, Metro, Buena Vista, etc.
- Incorpora tecnología Java (de Sun) para el soporte de tecnologías interactivas
- Soportes
 - Una cara una capa -> 25 GB.
 - Hasta dos caras, dos capas -> 100GB
 - Modelos experimentales de tres caras tres capas con 33GB por capa (200GB)
- Existe comercialmente desde 2003-2204 en USA y Japón

- Dividido en regiones, como DVD -> limita el uso de soportes y el número de cambios de región.
- Soporte DRM muy estricto -> el dispositivo "se autodestruye" si "sospecha" que se está intentando "hackear" el hardware.

- HD DVD

- Propuesto por
 - Compañías "técnicas": NEC, Toshiba, Sanyo, Microsoft, HP, Canon, etc.
 - Compañías "de contenidos": Paramount, Universal, etc.
- Incorpora tecnología iHD (de Microsoft y Toshiba) para el soporte de tecnologías interactivas
- Soportes
 - Una cara una capa -> 15 GB.
 - Hasta dos caras, tres capas -> 90GB
- De momento no se usan regiones
- Soporte DRM no tan estricto -> limita por hardware la reproducción de contenidos

- JAZ (Iomega)
 - Tecnología Winchester (excepto la cabeza que está en la unidad)
 - 1GB y 2GB
 - Tiempo de acceso 15ms
 - Velocidad 5MB/s
- SyJet (SyQuest)
 - Tecnología similar al JAZ
 - Capacidad 1'5GB
 - Tiempo de acceso 15ms
 - Velocidad 5MB/s
- Cintas (streamers)
 - Muy baratas
 - Acceso secuencial
 - Tamaños de 4GB o mayores
 - Velocidades muy bajas

Interfaces a discos

- Función:
 - Facilitar la comunicación entre el dispositivo y el equipo
 - Define:
 - Nivel físico: señales eléctricas, cables, etc.
 - Protocolo: control de errores, instrucciones, etc.
- Interfaz ST412/506 (1980)
 - Codificación en disco MFM/RLL
 - Capacidad máxima 1024 cilindros/16 cabezas/ 17 sectores(MFM) o 26 sectores (RLL)
 - Transmisión serie -> hasta 5Mbps (codificado MFM/RLL)
 - El disco incluye los circuitos de control del motor y lectura/escritura
 - Necesaria una controladora. Permite hasta 4 discos

- Interfaz ESDI (1983)
 - Codificación MFM/RLL, pero transmite en NRZ
 - Doble no de sectores
 - Capacidad 4096 cilindros, 64 cabezas
 - Velocidad serie 10-15Mbps
 - Hasta 7 discos
- Interfaz SCSI (1982)
 - Distintos dispositivos
 - Incluye el controlador en el disco
 - Trasferencia en paralelo 8 bits o 16/32 bits (Wide SCSI)
 - Descarga al uP del trabajo de las transferencias
 - Velocidad hasta 160MB/s
 - Hasta 7 dispositivos / 15 dispositivos (Wide SCSI) /32 dispositivos

- Interfaz IDE o ATA(1985)
 - Incluye controlador en el disco
 - Capacidad máxima 1024 cilindors/16cabezas/64 sectores = 504MB
 - 2 discos
 - Versiones siguientes:
 - ATA-2 (EIDE) + ATAPI
 - Conexión de CDROMs
 - Interfaz IDE + comandos SCSI
 - Hasta 8'26GB
 - UDMA (1998) -> aumento de velocidad y capacidad
 - UDMA2 (2000)
 - Conector de 40 pines
 - Reubicación de sectores defectuosos en el disco (sectores de recambio)

Interfaz IDE (cont)

- Direccionamiento:
 - CHS -> direccionamiento físico
 - LBA -> direccionamiento lógico
- Modos de funcionamientos
 - Modos PIO -> desde modo 0 (3'3MB/s) hasta modo 4 (16'6MB/s)
 - Modos DMA
 - DMA-1 -> hasta 13'3MB/s
 - DMA-2 -> hasta 16'6 MB/s
 - UDMA -> 33'3MB/s
 - UDMA66 -> cable 80 hilos (blindaje)
 - UDMA100 -> 100MB/s
 - UDMA133 -> 133MB/s

- Interfaz SATA (Serial-ATA)

- Transmisión serie
 - Dos lineas para datos
 - El resto para control y ampliaciones futuras
- No hay maestro-esclavo => no interferencias
- Aumento de velocidad:
 - SATA I -> 150MB/s
 - SATA II -> 300 MB/s
 - SATA III -> 600 MB/s
- Cable de hasta 1m
- Tensiones de 3.3V (datos)
- hot-plug

Formato lógico de discos

- Formato lógico a alto nivel-> creación del sistema de archivos
- Específico del S.O.
- Dos fases:
 - Particionamiento del disco
 - MBR = sector inicial -> arranque + tabla particiones
 - 4 particiones primarias
 - Formateo de la partición
 - Registro BOOT al principio
 - Sistema de archivos

- Tipos de sistema de archivos
 - FAT16
 - BOOT = sector 0. Registro de arranque
 - FAT (Tabla de asignación de archivos) (duplicada)
 - La partición se divide en clusters (unidad mínima)
 - Una entrada en FAT por cada cluster
 - En cada entrada indica si el cluster está libre, ocupado, defectuosos o reservado, y cluster siguiente
 - Directorio = índice con entradas = nombre fichero + atributos + tamaño + cluster de inicio
 - Características:
 - Máximo tamaño 2GB (cluster 32KB)
 - Direcciones de 16 bits
 - Desperdicio de espacio
 - Tamaño FAT máximo = 128KB -> velocidad de acceso

- VFAT -> parche FAT16 nombres largos
- FAT32
 - Direcciones de 32 bits
 - Hasta 8Gb, cluster de 4KB
 - Por encima de 8GB, cluster de 8KB
 - Tamaño FAT para 2GB = 2MB
 - Accesos lentos
 - Desperdicio de RAM

- NTFS

- Volumen lógico = partición lógica (parte de un disco, etc)
- MFT (Master File Table) -> para cada volumen. Incluye: atributos, BOOT, directorio raiz, etc.
- Registros de ficheros-> para cada fichero: nombre, información, seguridad y punteros a los datos
- Directorio -> fichero que contiene las entradas del directorio
- Compresión de ficheros

- UNIX (UFS, minix, ext2)

- Sistema de archivos
 - BOOT (primer bloque)
 - Superbloque -> describe el estado del sistema de archivos
 - Lista de inodos (empezando por el inodo raiz)
 - Datos
- Inodo -> información sobre
 - Propietario y grupo
 - Permisos
 - Tamaño
 - Acceso a los datos (punteros)
 - En memoria incluye información de bloqueo, diferencias memoriadisco y otras
- Directorio = fichero con una tabla inodo-nombre fichero en su campo de datos