
Práctica 1: Puertas lógicas

Objetivos

- Aplicar teoremas de álgebra de Boole y métodos de simplificación en el manejo de funciones lógicas.
- · Manejar funciones lógicas en sus distintas formas
- Leer y realizar esquemas con puertas lógicas.
- Montar circuitos con puertas lógicas
- · Realizar medidas en circuitos digitales con la sonda lógica.

Actividad 1

El circuito de la figura realiza una función lógica de tres variables, f(a,b,c). Se pide realizar las siguientes actividades y reflejar cada una de ellas en la memoria:

- 1. Expresar la función lógica que realiza el circuito
- 2. Realizar la tabla de verdad teórica del circuito el los puntos 1 y 2 y en la salida. Rellenar una tabla como la de la derecha.
- 3. Expresar la función f(a,b,c) en forma canónica
- 4. Montar el circuito
- 5. Probar el circuito para todas las combinaciones posibles de entrada, comprobando las señales en 1 y 2 y en la salida. Rellenar una tabla como la de la derecha y comparar con la teórica

abc	1	2	f(a,b,c)
000			
001			
010			
011			
100			
101			
110			
111			

Actividad 2

Tenemos una función de cuatro variables, f(a,b,c,d) cuya tabla de verdad es la que se indica. Se pide realizar las siguientes actividades y reflejar cada una de ellas en la memoria.

- 1. Expresar la función en forma canónica
- 2. Simplificar la función por el método de Karnaugh y por el de McKluskey en forma de maxitérminos y minitérminos.
- 3. Expresar la función en forma simplificada
- 4. Dibujar el diagrama del circuito a partir de puertas NOT, AND y OR en la forma en la que salga más sencillo.
- 5. Montar el circuito
- 6. Probar el circuito y comprobar que el funcionamiento coincide con la tabla de verdad.

0001	1		
0010	0		
0011	1		
0100	0		
0101	0		
0110	0		
0111	0		
1000	1		
1001	1		
1010	1		
1011	1		
1100	0		
1101	0		
1110	0		
1111	0		

abcd

0000

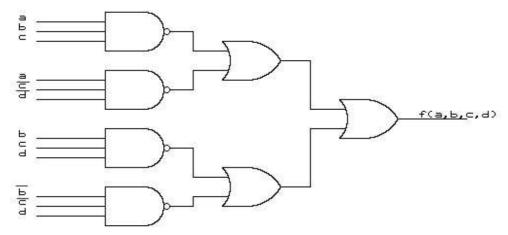
f(a,b,c,d)

0

Actividad 3

Se van a a medir los parámetros de una puerta lógica TTL y otra CMOS. Sobre un inversor TTL-LS y un inversor CMOS, realizar las siguientes medidas:

- 1. Variando su tensión de salida entre 0 y 5V, medir su tensión de entrada y dibujar su curva de transferencia Vi/Vo.
- 2. Conectar a su entrada un nivel lógico V_{IH}=5V i medir si corriente de entrada I_{IH}. Variar la tensión de entrada dentro de los valores válidos para un nivel alto, y comprobar que ocurre con la corriente de entrada.
- 3. Conectar a su entrada un nivel lógico V_{II}=0V i medir si corriente de entrada I_{II}. Variar la tensión de entrada dentro de los valores válidos para un nivel alto, y comprobar que ocurre con la corriente de entrada.
- 4. Conectar a la entrada de la puerta un nivel lógico bajo (0V) y conectar su salida a una resistencia variable (100K) conectada a masa. Medir en la salida corriente y tensión para distintos valores de R, y ver cuando la salida deja de ser un "1" lógico válido.
- 5. Conectar a la entrada de la puerta un nivel lógico bajo (5V) y conectar su salida a una resistencia variable (100K) conectada a Vcc. Medir en la salida corriente y tensión para distintos valores de R, y ver cuando la salida deja de ser un "0" lógico válido.
- 6. Comparar los resultados de la puerta TTL y la CMOS y comentarlos.


Actividad 4

Tenemos una función de cinco variables, f(a,b,c,d,e) cuya tabla de verdad es la que se indica. Se pide realizar las siguientes actividades y reflejar cada una de ellas en la memoria.

- 1. Expresar la función en forma canónica
- 2. Simplificar la función por el método de McKluskey, en forma de minitérminos
- 3. Expresar la función en forma simplificada
- 4. Dibujar el diagrama del circuito a partir de puertas NOT, AND y OR en la forma en la que salga más sencillo.
- 5. Montar el circuito
- 6. Probar el circuito y comprobar que el funcionamiento coincide con la tabla de verdad.

abcd	f(a,b,c,d,e)	abcd	f(a,b,c,d,e)
00000	0	10000	0
00001	0	10001	0
00010	0	10010	1
00011	1	10011	1
00100	1	10100	0
00101	1	10101	1
00110	1	10110	1
00111	1	10111	1
01000	1	11000	1
01001	1	11001	1
01010	1	11010	1
01011	1	11011	1
01100	0	11100	1
01101	0	11101	1
01110	0	11110	1
01111	0	11111	1

Actividad 5(opcional)

El circuito de la figura realiza una función lógica de cuatro variables, f(a,b,c,d). Se pide realizar las siguientes actividades y reflejar cada una de ellas en la memoria:

- 1. Expresar la función lógica que realiza el circuito
- 2. Realizar la tabla de verdad teórica del circuito.
- 3. Expresar la función f(a,b,c) en forma canónica
- 4. Montar el circuito
- 5. Probar el circuito para todas las combinaciones posibles de entrada.

Fechas de realización: 2, 4, 7 y 8 de Noviembre Entrega de la memoria: Fecha tope: 14 de Noviembre