N

MICROCHIP

dsPIC® DSC SPEECH
CODING SOLUTIONS
USER’S GUIDE

DDDDDDDD

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

—1S0/TS 16949:2002 —=

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEeLoq, KEELOQ logo, microlD, MPLAB, PIC,
PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt
are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable
Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The
Embedded Control Solutions Company are registered
trademarks of Microchip Technology Incorporated in the
US.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,
Powerinfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,
WiperLock and ZENA are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2007, Microchip Technology Incorporated, Printed in the
U.S.A,, All Rights Reserved.

f‘} Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS70295A-page i

© 2007 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING SOLUTIONS

MICROCHIP USER’S GUIDE

Table of Contents
... 1
Chapter 1. Overview
T OVEIVIEW e 7
1.2 Other FEAUIES ...t 8
Chapter 2. Installation
2.1 Installation ProCeAUIet eeeeeeeeeeeeees 9
2.2 G711 LIBrary FileS ..ooooo oot e e e 10
2.3 G.726A Library Filescccociiiiiiii e ee e eeeeees 12
2.4 SpeeX Library Files e 14
Chapter 3. Application Programming Interface
3.1 Application Programming Interfacecccoiiiiiiiiiiiee e 17
3.2 System ReqUIrEMENTSuiiiiiiiceeeece e 17
BB GL7TT AP e aaaaaan 19
3.4 G.T26A AP e 23
3.5 SPEEX AP et e et et e e e et e ae e e aaaeaees 30
Chapter 4. Integrating Speech Encoding in your Application
4.1 Integrating Speech ENCOAINGcuvvuiiiiiiiii e 35
4.2 Data BUFfErS ..ooooiiiiiii i nannees 35
4.3 Encoder Initializationccooiiiiiiii e 36
4.4 Encoder Heap Utilization ... 37
4.5 Data Sampling Initializationccoooiiiiiiiiiii 37
4.6 Data SamPliNgG ...coooieiiieiiie e 38
S = oo T 11 T S 38
4.8 End Data Sampling ...ocoooiiiiii e 39
Chapter 5. Integrating Speech Decoding in your Application
5.1 Integrating Speech Decodingccouviiiiiiii i 41
5.2 Data BUfErS ...eeeeiiii ettt e e e e aaaaa s 41
5.3 Decoder INitializationeeeeeiiiiiiiiiiie e 42
5.4 Decoder Heap UtIliZationccoooieiiiiiiiii e 44
5.5 Decoding the First Frame ... 44
5.6 Speech Playback Initializationcccceviiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 44
5.7 SpeecCh PlaybacKooiiiiiiiiiiiiiie e 44
LT T8 D 1= Yot o [o T P 45
5.9 Ending Speech Playback ... 48

© 2007 Microchip Technology Inc. DS70295A-page iii

dsPIC® DSC Speech Coding Solutions User’s Guide

Chapter 6. Speech Encoding Utility

6.1 System ReqUIremMentsc.oouiiiiiii e e e 49
5.2 OVEIVIEW ..ottt ettt ettt e et ettt e e e e e e et e e e e e e e e aetaaaaaaaeaaaaaaaaaaaaaaaaens 49
6.3 Encoding Speech from a Microphoneccccccc 51
6.4 Encoding Speech from a WAV file ... 54
6.5 Recommendations for Encoding from a Microphone 54
6.6 Using the Command Line Decodercccccovviiiiiiiiiiiiiieeeeeeeee 54
Chapter 7. Using Flash Memory for Speech Playback
7.1 Using External Flash MemOrycooooiiiiiiiiiii e 55
7.2 Storing Speech Encoding Utility Data to External Flash Memory 56
7.3 Building a Loadable Hex File for External Flash Memorycccccccveenn.n. 56
7.4 Programming the Hex File to External Flash Memoryccccccoiiiiiinnnnes 57
7.5 Running the EFP ULIlityoooiiiiiii e 59
7.6 Error HandliNgoooiiieeee e 61
7.7 Other External SOIULIONSoooiiiiiiiiiiee e 61
Chapter 8. Speech Coding Demos
8.1 Communication DEMOoeviiiiiiiiiiiii e 63
t J0228 WoTo] o] o = od (G D T= 1 o TP URPPPRRN 65
8.3 Playback DEMOcooiiiiiiiii e 66
Appendix A. Si3000 Codec Configuration
N I 1 1o T [F T2 1T o PP RPPEP 67
A.2 Default Configuration ... 67
A.3 Setting the dsPIC DSC as CloCK SIaVveceevevvviveieeiiiiiieeeieeeeeeeeee e, 68
A.4 Modifying the Codec Gain and Volume Controlsccccceveeiiiiiiiiiiieenenn. 68
Appendix B. External Flash Memory Reference Design
BT OVEIVIEW ..ttt e e e et e e e e e e e eee e e e e eannnnes 71
3 T =G 73
Worldwide Sales and Service ... 76

DS70295A-page iv © 2007 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING SOLUTIONS
USER'’S GUIDE

MICROCHIP

Preface

NOTICE TO CUSTOMERS

document.

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.
Select the Help menu, and then Topics to open a list of available on-line help files.

This preface contains general information that is useful to know before you begin using
the dsPIC® DSC Speech Encoding/Decoding Libraries. Items discussed include:

Document Layout

Conventions Used in this Guide

Warranty Registration

Recommended Reading

The Microchip Web Site

Development Systems Customer Change Notification Service
Customer Support

Document Revision History

DOCUMENT LAYOUT

This document describes how to use the dsPIC DSC Speech Encoding/Decoding
Libraries as a development tool to emulate and debug firmware on a target board. The
manual layout is as follows:

Chapter 1. Overview — This chapter provides an overview of the dsPIC DSC
Speech Encoding/Decoding Libraries and identifies the salient features of each
library.

Chapter 2. Installation — This chapter provides detailed instructions for installing
the dsPIC DSC Speech Encoding/Decoding Libraries on your PC and setting
them up to run with the MPLAB® Integrated Development Environment (IDE).

Chapter 3. Application Programming Interface — This chapter provides
information you need to interface the dsPIC DSC Speech Encoding/Decoding
Libraries with your user application.

Chapter 4. Integrating Speech Encoding in your Application — This chapter
provides information to help you understand how to integrate the speech encod-
ing portion of the dsPIC DSC Speech Encoding/Decoding Libraries into your
application and how to build with the library.

© 2007 Microchip Technology Inc. DS70295A-page 1

dsPIC® DSC Speech Coding Solutions User’s Guide

» Chapter 5. Integrating Speech Decoding in your Application — This chapter
provides information to help you understand how to integrate the speech decod-
ing portion of the dsPIC DSC Speech Encoding/Decoding Libraries into your
application and how to build with the library.

» Chapter 6. Speech Encoding Utility — This chapter describes the Speech
Encoding Utility provided with the dsPIC DSC Speech Encoding/Decoding Librar-
ies and provides instructions for creating speech files.

» Chapter 7. Using Flash Memory for Speech Playback — This chapter provides
information on the use of external Flash memory with the library.

» Chapter 8. Speech Coding Demos — This chapter describes a sample
application that demonstrates stand-alone speech encoding and playback from
on-chip data EEPROM memory.

» Appendix A. Si3000 Codec Configuration — This appendix provides
configuration details for the Si3000 codec interface.

» Appendix B. External Flash Memory Reference Design — This appendix
provides circuit schematics for an interface to external 16-bit non-volatile memory.

DS70295A-page 2 © 2007 Microchip Technology Inc.

Preface

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description

| Represents

Examples

Arial font:

Italic characters

Referenced books

MPLAB® IDE User’s Guide

Emphasized text

...Is the only compiler...

Initial caps A window the Output window
A dialog the Settings dialog
A menu selection select Enable Programmer
Quotes A field name in a window or | “Save project before build”
dialog
Underlined, italic text with A menu path File>Save
right angle bracket
Bold characters A dialog button Click OK
A tab Click the Power tab
‘bnnnn A binary number where nis a |‘b00100, ‘b10

digit

Text in angle brackets < >

A key on the keyboard

Press <Enter>, <F1>

Courier font:

Plain Courier

Sample source code

#define START

Filenames autoexec.bat

File paths c:\mccl18\h

Keywords _asm, _endasm, static
Command-line options -Opa+, -Opa-

Bit values 0, 1

Italic Courier A variable argument file.o,where file can be
any valid filename
0Oxnnnn A hexadecimal number where | 0xFFFF, 0x007A

n is a hexadecimal digit

Square brackets []

Optional arguments

mccl8 [options] file

[options]

Curly brackets and pipe
character: {| }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {01}

Ellipses...

Replaces repeated text

var name [,
var name...]

Represents code supplied by
user

void main (void)

{...
}

© 2007 Microchip Technology Inc.

DS70295A-page 3

dsPIC® DSC Speech Coding Solutions User’s Guide

WARRANTY REGISTRATION

Please complete the enclosed Warranty Registration Card and mail it promptly.
Sending in the Warranty Registration Card entitles users to receive new product
updates. Interim software releases are available on the Microchip web site.

RECOMMENDED READING

This user's guide describes how to use the G.711, G.726A and Speex Speech
Encoding/Decoding libraries. The following Microchip documents are available and
recommended as additional reference resources.

dsPIC30F Family Reference Manual (DS70046)

Refer this document for detailed information on dsPIC30F device operation. This
reference manual explains the operation of the dsPIC30F Digital Signal Controller
(DSC) family architecture and peripheral modules, but does not cover the specifics of
each device. Refer to the appropriate device data sheet for device-specific information.

dsPIC30F/33F Programmer’s Reference Manual (DS70157)

This manual is a software developer’s reference for dsPIC30F and dsPIC33F 16-bit
DSC devices. This manual describes the instruction set in detail and also provides
general information to assist you in developing software for the dsPIC30F/33F DSC
family.

dsPIC33F Family Datasheet (DS70165)

This document provides an overview of the functionality of the dsPIC33F DSC product
family. It includes device-specific information such as pinout diagrams, register maps,

electrical specifications and packaging, besides providing an overview of the CPU and
peripheral features of the dsPIC33F family.

MPLAB® ASM30, MPLAB® LINK30 and Utilities User’s Guide (DS51317)

This document helps you use Microchip Technology’s language tools for dsPIC DSC
devices based on GNU technology. The language tools discussed are:

* MPLAB ASM30 Assembler

* MPLAB LINK30 Linker

* MPLAB LIB30 Archiver/Librarian

+ Other Utilities

MPLAB® C30 C Compiler User’s Guide and Libraries (DS51284)

This document helps you use Microchip’s MPLAB C30 C compiler for dsPIC DSC
devices to develop your application. MPLAB C30 is a GNU-based language tool, based
on source code from the Free Software Foundation (FSF). For detailed information
about FSF, see www.fsf.org.

MPLAB® IDE Simulator, Editor User’s Guide (DS51025)

Refer this document for detailed information pertaining to the installation and
implementation of the MPLAB Integrated Development Environment (IDE) Software.

To obtain any of these documents, contact the nearest Microchip sales location (see
back page) or visit the Microchip web site at: www.microchip.com.

Note: The latest versions of the following manufacturers’ data sheets are also
recommended as reference sources:
Si3000 Voiceband Codec with Microphone/Speaker Drive (Silicon
Laboratories Publication # Si3000-DS11)
Am29F200B 2 Megabit (256 K x 8-Bit/128 K x 16-Bit) CMOS 5.0
Volt-only, Boot Sector Flash Memory (AMD Publication # 21526)

DS70295A-page 4

© 2007 Microchip Technology Inc.

http://www.fsf.org
http://www.microchip.com
http://www.microchip.com

Preface

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

* Product Support — Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQs), technical
support requests, online discussion groups and Microchip consultant program
member listing

» Business of Microchip — Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

» Compilers — The latest information on Microchip C compilers and other language
tools. These include the MPLAB C18 and MPLAB C30 C compilers; MPASM™
and MPLAB ASM30 assemblers; MPLINK™ and MPLAB LINK30 object linkers;
and MPLIB™ and MPLAB LIB30 object librarians.

* Emulators — The latest information on Microchip in-circuit emulators.This
includes the MPLAB ICE 2000 and MPLAB ICE 4000.

* In-Circuit Debuggers — The latest information on the Microchip in-circuit
debugger, MPLAB ICD 2.

- MPLAB® IDE - The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB SIM simulator, MPLAB IDE Project Manager
and general editing and debugging features.

* Programmers — The latest information on Microchip programmers. These include
the MPLAB PM3 and PRO MATE® Il device programmers and the PICSTART®
Plus and PICkit™ 1 development programmers.

© 2007 Microchip Technology Inc. DS70295A-page 5

dsPIC® DSC Speech Coding Solutions User’s Guide

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

« Distributor or Representative

* Local Sales Office

+ Field Application Engineer (FAE)
 Technical Support

Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

DOCUMENT REVISION HISTORY
Revision A (September 2007)

« |nitial release of this document.

DS70295A-page 6 © 2007 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING SOLUTIONS
USER'’S GUIDE

MICROCHIP

Chapter 1. Overview

The dsPIC DSC Speech Encoding/Decoding Libraries include G.711, G.726A and
Speex Speech Encoding/Decoding software application solutions. These individual
libraries provide toll-quality voice compression and decompression to help you
generate speech-based embedded applications on the dsPIC30F and dsPIC33F
families of digital signal controllers. This chapter provides an overview and feature
listing of these three libraries. Topics covered include:

« Overview
» Other Features

1.1 OVERVIEW

The three speech coding techniques described in this document provide different sets
of capabilities and consume different levels of computational resources. In each case,
the objectives are to reduce the amount of data required to represent a speech signal
while not compromising on the quality of speech when it is decoded.

In communication applications, the advantage of speech compression is to reduce the
consumption of communication bandwidth, while for many other applications the
advantage is to reduce the amount of memory required to store recorded speech.

A comparison of the computational resource requirements used by the three algorithms
is given in section 3.2.2.

111 G.711 Speech Encoding/Decoding Library

The G.711 Library is an ITU-T standard speech coding method that utilizes A-law and
u-law compression/expansion (also known as companding). This technique provides a
reduction in data (compression ratio) of 2:1, and the best decoded speech quality of the
three techniques. For an input sampling rate of 8 kHz, the output bit-rate obtained is 64
kbps. Compressed playback files require approximately 8 Kbytes of memory for each
second of speech.

1.1.2 G.726A Speech Encoding/Decoding Library

The G.726A Library is another ITU-T standard speech coder. This library uses the
Adaptive Differential Pulse Code Modulation (ADPCM) methodology. Table 1-1 lists
the output bit rates provided for the corresponding compression ratios.

TABLE 1-1: G.726A LIBRARY BIT RATES AND COMPRESSION RATIOS

Bit Rate Compression Ratio
40 kbps 3.2:1
32 kbps 4:1
24 kbps 5.33:1
16 kbps 8:1

The 40 kbps and 32 kbps modes of G.726A provide a decoded speech quality similar
to that of G.711.

Compressed playback files require 2-5 Kbytes of memory for each second of speech.

© 2007 Microchip Technology Inc. DS70295A-page 7

dsPIC® DSC Speech Coding Solutions User’s Guide

113 Speex Speech Encoding/Decoding Library

The Speex Library is based on the open-source Speex speech coder. The library
samples speech at 8 kHz and compresses it to a rate of 8 kbps, resulting in a 16:1
compression ratio. The Speex encoding algorithm uses Code Excited Linear Prediction
(CELP), which provides a reasonable trade-off between performance and
computational complexity.

Compressed playback files require approximately 1 Kbyte of memory for each second
of speech.

1.2 OTHER FEATURES

Irrespective of the speech encoding/decoding algorithm used, these speech files can
be stored on-chip, in program memory or data EEPROM, or externally in Flash
memory, as shown in Figure 1-1.

FIGURE 1-1: TYPICAL SPEECH ENCODING/DECODING APPLICATION

dsPIC30F/33F Digital Signal Controller

x/ bel SPEECH ENCODING/DECODING LIBRARY
CODEC |¢ >
Pr—1 —_— Encoder = = 1 §| Optional
External
C&/ Analog |APC o Non-
Front End (Drivers) Volatile
Memory
| 4 = « (Flash
Analog :WM g Decoder < ()
Ps—""] Out Circuit

3

PM DATA | EEPROM DATA
USER APPLICATION
ON-CHIP MEMORY

The flexible analog interface offers several design options. The speech encoder can
sample input from either an external codec or the on-chip 12-bit analog-to-digital
converter. The speech decoder can play decoded speech through either an external
codec or the on-chip pulse-width modulator. With the Speex library, an optional Voice
Activity Detection feature enhances compression by detecting voids in the incoming
speech and compressing them at a higher ratio. All three libraries optimize computa-
tional performance and RAM usage. Well-defined APIs (Chapter 3. “Application Pro-
gramming Interface”) make it easy to integrate with your application.

Playback-only applications can benefit from the PC-based speech encoding utility
(Chapter 6. “Speech Encoding Utility”), which lets you encode speech files from
your desktop using a microphone or existing WAV files. Encoded speech files are built
into your application through your MPLAB IDE project, like any source file. The speech
encoding utility lets you to select four target memory areas for your speech file:

* Program memory

* RAM

* Data EEPROM (dsPIC30F only)

» External flash memory (dsPIC30F and Speex only)

External flash memory allows you to store several minutes of speech (1 minute of
speech requires 60 KB), and it is supported through a dsPIC general purpose I/O port.

DS70295A-page 8

© 2007 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING SOLUTIONS
USER’S GUIDE

MICROCHIP

Chapter 2. Installation

The dsPIC DSC Speech Encoding/Decoding Libraries do not execute directly from the
CD. You must install them on your laptop or desktop PC. This chapter includes the
following installation information:

* Installation Procedure

» G.711 Library Files

» G.726A Library Files

» Speex Library Files

2.1 INSTALLATION PROCEDURE

Each of the libraries is packaged on a CD. To install the library, follow these steps:

1. Insert the library CD into the appropriate drive. The installation screen is
displayed.

2. Select the Click to Install Files option. The installation location dialog is
displayed to let you choose a directory for the library.

3. Browse to the directory of your choice, then click OK. The License Agreement is
displayed.

4. Review the license agreement and then click OK to continue. The next dialog
displays the installation progress. The Installation Complete dialog then displays.

The installation process creates a folder named G.711 v1.0,G.726A v1.0 or
Speex v2.0 (depending on the specific library installed) in the user-selected root
directory.

© 2007 Microchip Technology Inc. DS70295A-page 9

dsPIC® DSC Speech Coding Solutions User’s Guide

2.2 G.711 LIBRARY FILES

The G.711 Library creates a directory labeled G711 v1.0. This directory contains
three folders with their corresponding subfolders and files:

* G711 dsPIC30F Folder

* G711 dsPIC33F Folder

* G711 PC Folder

221 G711_dsPIC30F

This folder contains all library archive, include and demo application files to support the
G711 library on the dsPIC30F device family. This folder contains three subfolders:

* Demo

* Inc

* Src

2211 DEMO

The demo subfolder contains three additional subfolders:

e Communication

* Loopback

* Playback

These subfolders include all source, include, project and workspace files required for

the Communication, Loopback and Playback demo applications (Refer to Chapter
8. “Speech Coding Demos” for more details).

2212 INC

The inc subfolder contains all include files required by the library and by the
applications integrating the library. The following files are provided:

« g711.h

* G711Lib common.h

* G711Lib common.inc

* G711Lib_internal.h

+ G711Lib_Si3000.h

2213 SRC

The src folder contains the source files for encoding and decoding speech using the
G.711 algorithm. Any application integrating this library must include the following
source files.

Two source files provided are:

* g711 decoder.c
* g711 encoder.c

DS70295A-page 10 © 2007 Microchip Technology Inc.

Installation

2.2.2 G711_dsPIC33F

This folder contains all library archive, include and demo application files to support the
G711 library on the dsPIC33F device family. This folder contains three subfolders:

* Demo

* Inc

* Src

2221 DEMO

The demo subfolder contains three additional subfolders:

e Communication

* Loopback

* Playback

These subfolders include all source, include, project and workspace files required for

the Communication, Loopback and Playback demo applications (Refer to Chapter
8. “Speech Coding Demos” for more details).

2222 INC

The inc subfolder contains all include files required by the library and by the
applications integrating the library. The following files are provided:

« g711.h

* G711Lib common.h

* G711Lib common.inc

* G711Lib_internal.h

+ G711Lib_Si3000.h

2223 SRC

The src folder contains the source files for encoding and decoding speech using the
G.711 algorithm. Any application integrating this library must include the following
source files.

Two source files provided are:

* g711 decoder.c
* g711 encoder.c

2.2.3 G711_PC

This folder contains:

» a Speech Encoding Utility (dsPICSpeechRecord.exe)
+ dll files for the Speech Encoding Utility (SpeechRecord G711.d11 and
SpeechRecord G726.d11)

» a PC command-line based utility to decode speech using the G.711 decoder
(AWG711Decoder.exe)

© 2007 Microchip Technology Inc. DS70295A-page 11

dsPIC® DSC Speech Coding Solutions User’s Guide

2.3 G.726A LIBRARY FILES

The G.726A Library creates a directory labeled G7262 v1.0. This directory contains
three folders with their corresponding subfolders and files:

* G726A dsPIC30F Folder

* G726A dsPIC33F Folder

* G726A_PC Folder

2.31 G726A_dsPIC30F

This folder contains all library archive, include and demo application files to support the
G726A library on the dsPIC30F device family. This folder contains the following three
subfolders:

* Demo

* Inc

e Lib

23.11 DEMO

The demo subfolder contains three additional subfolders:

e Communication

* Loopback

* Playback

These subfolders include all source, include, project and workspace files required for

the Communication, Loopback and Playback demo applications (Refer to Chapter
8. “Speech Coding Demos” for more details).

2312 INC

The inc subfolder contains all include files required by the library and by the
applications integrating the library. The following files are provided:

* g/26a.h

* G726ALib_common.h

* G726ALib_common.inc

* G726ALib_internal.h

+ G726ALib_S5i3000.h

2313 LIB

The 1ib folder contains a pre-compiled library archive file for encoding and decoding
speech using the G.726A algorithm. Any application integrating this library must
include this library archive file.

A single library archive is provided: 1ibg726a.a

DS70295A-page 12 © 2007 Microchip Technology Inc.

Installation

2.3.2 G726A_dsPIC33F

This folder contains all library archive, include and demo application files to support the
dsPIC33F device family. The folder structure and contents are similar to the
G726A dsPIC30F folder.

This folder contains all library archive, include and demo application files to support the
G726A library on the dsPIC33F device family. This folder contains the following three
subfolders:

* Demo

* Inc

* Lib

23.21 DEMO

The demo subfolder contains three additional subfolders:

e Communication

* Loopback

* Playback

These subfolders include all source, include, project and workspace files required for

the Communication, Loopback and Playback demo applications (Refer to Chapter
8. “Speech Coding Demos” for more details).

2.3.22 INC

The inc subfolder contains all include files required by the library and by the
applications integrating the library. The following files are provided:

e g726a.h

* G726ALib_common.h

* G726ALib_common.inc

* G726ALib_internal.h

* G726ALib_Si3000.h

2323 LIB

The 1ib folder contains a pre-compiled library archive file for encoding and decoding
speech using the G.726A algorithm. Any application integrating this library must
include this library archive file.

A single library archive is provided: 1ibg726a.a

2.3.3 G726A_PC

This folder contains:

» a Speech Encoding Utility (dsPICSpeechRecord.exe)

+ dll files for the Speech Encoding Utility (SpeechRecord G711.d11 and
SpeechRecord G726.d11)

» a PC command-line based utility to decode speech using the G.726A decoder
(AWG726ADecoder.exe)

© 2007 Microchip Technology Inc. DS70295A-page 13

dsPIC® DSC Speech Coding Solutions User’s Guide

24 SPEEX LIBRARY FILES
The Speex Library creates a directory labeled Speex v2.0. This directory contains
three folders with their corresponding subfolders and files:

* Speex dsPIC30F
* Speex dsPIC33F
* Speex PC

241 Speex_dsPIC30F

This folder contains all library archive, include and demo application files to support the
dsPIC30F device family. This folder contains the following three subfolders:

* Demo

* Inc

* Lib

2411 DEMO

The demo folder contains two additional subfolders:
e Communication
* Playback

These subfolders include all source, include, project and workspace files required for
the Communication and Playback demo applications (Refer to Chapter 8. “Speech
Coding Demos” for more details).

2412 INC

The inc folder contains all include files required by the library and by the applications
integrating the library. The following files are provided:

* spxlib_common.h

* spxlib common.inc

* spxlib internal.h
* spxlib Si3000.h

2413 LIB

The 1ib folder contains a pre-compiled library archive file for encoding and decoding
speech using the Speex algorithm. Any application integrating this library must include
this library archive file.

A single library archive is provided: 1ibSpeex.a

DS70295A-page 14 © 2007 Microchip Technology Inc.

Installation

2.4.2 Speex_dsPIC33F

This folder contains all library archive, include and demo application files to support the
dsPIC33F device family. The folder structure and contents are similar to the
Speex_dsPIC30F folder, except that the RecordPlay demo is not included.

This folder contains the following three subfolders:

* Demo
* Inc
e Lib

2421 DEMO

The demo folder contains two additional subfolders:
e Communication
* Playback

These subfolders include all source, include, project and workspace files required for
the Communication and Playback demo applications (Refer to Chapter 8. “Speech
Coding Demos” for more details).

2422 INC

The inc folder contains all include files required by the library and by the applications
integrating the library. The following files are provided:

* spxlib_ common.h

* spxlib common.inc

* spxlib_internal.h

+ spxlib $i3000.h

2423 LIB

The 1ib folder contains a pre-compiled library archive file for encoding and decoding
speech using the Speex algorithm. Any application integrating this library must include
this library archive file.

A single library archive is provided: 1ibSpeex.a

© 2007 Microchip Technology Inc. DS70295A-page 15

dsPIC® DSC Speech Coding Solutions User’s Guide

243 Speex_PC

This folder contains three subfolders containing various PC-based utilities:

* ExternalFlashHexmaker
* ExternalFlashProgrammer
e PCEU

2431 EXTERNALFLASHHEXMAKER

This subfolder is an MPLAB IDE workspace provided to enable users to generate a
Hex file containing pre-encoded speech data that can be programmed into an external
Flash memory device.

2432 EXTERNALFLASHPROGRAMMER

This subfolder is a dsPIC30F-based program provided to enable users to download
pre-encoded speech data through an RS-232 interface and program the data into an
AMD29F200B external Flash memory device.

2433 PCEU

This subfolder contains:

» a Speech Encoding Utility (dsPICSpeechRecord.exe)
+ adll file for the Speech Coding Utility (SpeechRecord.d11)

» a PC command-line based utility to decode speech using the Speex decoder
(AWSpeexDec.exe)

DS70295A-page 16

© 2007 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING SOLUTIONS
USER'’S GUIDE

MICROCHIP

Chapter 3. Application Programming Interface

This chapter provides information needed to interface each of the dsPIC DSC Speech
Encoding/Decoding Libraries with your user application. Topics covered include:

» Application Programming Interface

» System Requirements

+ G711 API

+ G.726A API

» Speex API

3.1 APPLICATION PROGRAMMING INTERFACE

All the three speech encoding/decoding libraries described in this document integrate
with a user application running on the dsPIC30F or dsPIC33F device to provide support
for handling speech in the application. The Application Programming Interfaces (APIs)
are similar for all the three libraries. Table 3-1 summarizes the API for each library.

TABLE 3-1: dsPIC DSC SPEECH ENCODING/DECODING LIBRARIES API
Library Source Files Implementation

G.711 g711 encoder.c |The appropriate source file must be included in the
g711 decoder.c |application, depending on whether encoding
(compression) or decoding (expansion) or both
encoding and decoding (companding) is required.

G.726A 1ibG726A.a This library archive contains functions for encoding
raw speech, for decoding encoded speech and for
encoder/decoder initialization. All functions in the
library adhere to the Microchip C30 compiler
function calling convention.

Speex libSpeex.a This archive contains both encoding and decoding
functions.

3.2 SYSTEM REQUIREMENTS

3.21 Device Frequency Requirements

All the three speech coding libraries require that speech be sampled and played back
at a fixed rate of 8.0 kHz. Speech sampling is typically performed by an external audio
codec that can interface with the dsPIC30F/33F via its Data Converter Interface (DCI)
module.

When sampling is performed with the DCI as the codec clock master (as in the demos
included with this library), your application can use only a limited number of system
frequencies to accommodate 8.0 kHz sampling rate. In this mode, the dsPIC processor
can execute only at multiples of 4.096 MHz. Thus, the allowable execution speeds for
applications using any of these libraries are 8.192 MHz, 12.288 MHz, 16.384 MHz and
24.576 MHz when the dsPIC30F/33F is the codec clock master.

© 2007 Microchip Technology Inc. DS70295A-page 17

dsPIC® DSC Speech Coding Solutions User’s Guide

To accommodate these system frequencies for DCI master mode, operate the dsPIC
using only the clock speeds shown in Table 3-2.

TABLE 3-2: ALLOWED CLOCK SPEEDS IN DCI MASTER MODE

Processor Frequency* Clock Frequency
8.192 MIPS 4.096 MHz
12.288 MIPS 6.144 MHz
16.384 MIPS 4.096 MHz
24 576 MIPS 6.144 MHz
* The decoder can run at these frequencies, but the encoder requires at least 19
MIPS.

To overcome the limitations that the processor frequency imposes on the sampling
rate, the DCI can be configured for slave operation. In this case, the DCI and Si3000
use an external clock. The dsPIC DSC Speech Encoding/Decoding Libraries allow you
to configure the DCI as a slave or master by providing #de fine statements in the
spxlib si3000.h file, as shown below:

#define DCIMODE 1

To configure the DCI as a slave, change the value to ‘0’. For the Si3000 codec register
settings, the #define statement for each register is provided in the
spxlib si3000.h file separately for master and slave operations of the DCI.

When operating with any alternate sampling/playback interfaces, such as the on-chip
12-bit ADC and PWM (with some external analog signal conditioning), there are no
restrictions on the system clock frequency provided the MIPS requirements of the
algorithms are met.

3.22 MIPS and Memory Requirements

Memory requirements for the G.711, G.726A and Speex libraries (operating in a
full-duplex configuration) are shown in Table 3-3.

TABLE 3-3: MIPS, FLASH AND RAM REQUIREMENTS

Library
Parameter

G711 G.726A Speex
Device Speed 1 MIPS 13 MIPS 20 MIPS
Flash Memory Required 3.5KB 6 KB 30 KB
RAM Required 3.5KB 4 KB 7 KB
Memory needed to store 8 KB 2,3,40r5KB 1 KB
1 sec of encoded speech

3.23 Software Requirements

The dsPIC DSC Speech Encoding/Decoding Libraries require the following PC
software:

* Windows 98/2000/XP

+ MPLAB IDE V7.60 or higher

+ MPLAB C30 Compiler V3.00 or higher

DS70295A-page 18 © 2007 Microchip Technology Inc.

Application Programming Interface

3.3 G.711 API

3.31 codecsetup Structure

The codecsetup structure is defined in the G7111ib_common. h file. This structure
is used to access:

+ user defined raw, encoded and decoded speech buffers (described in detail in the
next two sections)

» synchronization flags

» speech sample counters used for encoding and decoding

A basic understanding of this structure is required for integrating the library with your
application.

struct codecsetup

{
//Pointer to decoded Speech sample bufferl.
volatile short *sampleExpandIpBuffer;

//Pointer to decoded Speech sample buffer2.
volatile short *sampleExpandOpBuffer;

//Pointer to raw Speech sample bufferl.
volatile short *sampleIpBuffer;

//Pointer to raw Speech sample buffer2.
volatile short *sampleOpBuffer;

//Pointer to encoded speech sample bufferl.
volatile char *sampleComprsIpBuffer;

//Pointer to encoded speech sample buffer2.
volatile char *sampleComprsOpBuffer;

//Flag to indicate ping-pong buffer filled or empty.
volatile char fBlockdone;

//Flag to start or stop speech playback.
volatile char fStartPlay;

//Counter to keep count of number of blocks of data encoded.
volatile int blockCount;

//Counter to keep count of number of blocks of data decoded.
volatile int loadblockCount;

//Counter to keep track of number of samples stored.
volatile int countFill;

//Counter to keep track of number of samples played.
volatile int countLoad;

//Counter to keep track of number of samples encoded.
volatile unsigned long sampleCount;

//Number of samples in each frame.

© 2007 Microchip Technology Inc. DS70295A-page 19

dsPIC® DSC Speech Coding Solutions User’s Guide

volatile char numOfSamplesPerFrame;

//Flag to indicate decoding is done.
volatile char fBlockplayed;

//Flag to indicate compression is done.
volatile char fCompressdone;

//Flag to indicate encoding is done.
volatile char fEncodedone;

//Number of sets of data for the set ADC Buffer Length.
volatile int setOfADCData;

//Pointer to ADCBUF(0 register.
volatile unsigned int* AdcBufOPtr;

//Number of bytes in the encoded speech.
unsigned long arraysizeinbytes;

//Size of the recorded (encoded) speech in number of frames.
long recordSize;

//G.711 companding method: 1 for A-law, 0 for u-Law.
char law;

//G.726A output bit-rate: 5 for 40 kbps, 4 for 32 kbps,
// 3 for 24 kbps, 2 for 16 kbps.
short rate;

//Used to set Master/Slave in communication applications.
short initiator;

bi

The structure codecdata of type codecsetup is defined for your use in

G7111ib common.h file.

typedef struct codecsetup codecsetup
extern codecsetup codecdata;

Note: The G7111ib common.h file may be customized for each individual
application, but modifying the codecdata structure is not recommended.

DS70295A-page 20 © 2007 Microchip Technology Inc.

Application Programming Interface

3.3.2 g711Si3000 Structure

The g711513000 structure defined inthe G7111ib Si3000.h file represents all the
registers of the Si3000 Voiceband Codec. Applications that use the Si3000 codec as
the sampling and/or playback interface for speech can use this structure. This structure
also includes the settings for the DCI peripheral. This structure can be initialized using
the #define statements provided inthe G7111ib Si3000.h file.

Appendix A. “Si3000 Codec Configuration” contains detailed information about
configuring the Si3000 registers.

struct g7115i3000
{

int controll; //S513000 Register 1
int control2; //513000 Register 2
int pLLldivideN1; //S13000 Register 3
int pLLlmultiplyM1l; //S13000 Register 4
int rxgaincontroLl; //3513000 Register 5
int adcvolumecontrol; //513000 Register 6
int dacvolumecontrol; //513000 Register 7
int statusreport; //3513000 Register 8
int analogattenuation; //Si3000 Register 9
char dcimode; //l=master, O=slave
char dciintpri; //DCI interrupt priority
int becgl; //bit clock generator

bi
Set the #define statementin g7111ib Si3000.h file for your application. Another
#define statement is provided to create a data structure of type g711513000:
#define G711SI3000INIT const g7115i3000 g711 = G711;

To make the Speex structure accessible to your source application, simply reference
the G711SI3000INIT define in your source code, where you define your other data:

int my variable;

G711SI3000INIT // Si3000 data structure instantiation
// This defines the initialized Si3000
// data structure

© 2007 Microchip Technology Inc. DS70295A-page 21

dsPIC® DSC Speech Coding Solutions User’s Guide

3.3.3 alaw_compress() / ulaw_compress() Function

This function is used to:

» Compress a block of 256 speech samples.
» Generate an output block of compressed speech of 256 bytes.

Return Value

None

Parameters

This function has three parameters.
Parameter Slen

Data Type long

Usage Number of samples per block.

Parameter codecdata.sampleOpBuffer
Data Type short *
Usage Pointer to raw speech sample buffer 2.

Parameter codecdata.sampleComprsIpBuffer
Data Type short *
Usage Pointer to compressed speech sample buffer 1.

3.34 alaw_expand() / ulaw_expand() Function

This function is used to:

* Expand a block of 256 compressed speech samples.
» Generate an output block of 256 expanded speech samples.

Return Value

None

Parameters

This function has three parameters.

Parameter Slen
Data Type long
Usage Number of samples per block.

Parameter codecdata.sampleComprsOpBuffer
Data Type short *
Usage Pointer to compressed speech sample buffer 2.

Parameter codecdata.sampleExpandIpBuffer
Data Type short *
Usage Pointer to expanded speech sample buffer 1.

DS70295A-page 22 © 2007 Microchip Technology Inc.

Application Programming Interface

3.4 G.726A API

3.41 codecsetup Structure

The codecsetup structure is defined inthe G726A1ib common. h file. This structure
is used to access:

+ user defined raw, encoded and decoded speech buffers (described in detail in the
next two sections)

» synchronization flags

» speech sample counters used for encoding and decoding

A basic understanding of this structure is required for integrating the library with your
application.

struct codecsetup

{
//Pointer to decoded Speech sample bufferl.
volatile short *sampleDecodelIpBuffer;

//Pointer to decoded Speech sample buffer2.
volatile short *sampleDecodeOpBuffer;

//Pointer to raw Speech sample bufferl.
volatile short *sampleIpBuffer;

//Pointer to raw Speech sample buffer2.
volatile short *sampleOpBuffer;

//Pointer to encoded speech sample bufferl.
volatile char *sampleEncodeIpBuffer;

//Pointer to encoded speech sample buffer2.
volatile char *sampleEncodeOpBuffer;

//Flag to indicate ping-pong buffer filled or empty.
volatile char fBlockdone;

//Flag to start or stop speech playback.
volatile char fStartPlay;

//Counter to keep count of number of blocks of data encoded.
volatile int blockCount;

//Counter to keep count of number of blocks of data decoded.
volatile int loadblockCount;

//Counter to keep track of number of samples stored.
volatile int countFill;

//Counter to keep track of number of samples played.
volatile int countLoad;

//Counter to keep track of number of samples encoded.
volatile unsigned long sampleCount;

//Number of samples in each frame.

© 2007 Microchip Technology Inc. DS70295A-page 23

dsPIC® DSC Speech Coding Solutions User’s Guide

volatile char numOfSamplesPerFrame;

//Flag to indicate decoding is done.
volatile char fBlockplayed;

//Flag to indicate compression is done.
volatile char fCompressdone;

//Flag to indicate encoding is done.
volatile char fEncodedone;

//Number of sets of data for the set ADC Buffer Length.
volatile int setOfADCData;

//Pointer to ADCBUF(0 register.
volatile unsigned int* AdcBufOPtr;

//Number of bytes in the encoded speech.
unsigned long arraysizeinbytes;

//Size of the recorded (encoded) speech in number of frames.
long recordSize;

//G.711 companding method: 1 for A-law, 0 for u-Law.
char law;

//G.726A output bit-rate: 5 for 40 kbps, 4 for 32 kbps,
// 3 for 24 kbps, 2 for 16 kbps.
short rate;

//Used to set Master/Slave in communication applications.
short initiator;

bi

The structure codecdata of type codecsetup is defined for your use in

G726Alib common.h file.

typedef struct codecsetup codecsetup
extern codecsetup codecdata;

Note: The G726Alib common.h file can be customized for each individual
application, but modifying the codecdata structure is not recommended.

DS70295A-page 24 © 2007 Microchip Technology Inc.

Application Programming Interface

3.4.2 g726aSi3000 Structure

The g726as13000 structure defined in the G726A1ib Si3000.h file represents all
the registers of the Si3000 Voiceband Codec. Applications that use the Si3000 codec
as the sampling and/or playback interface for speech can use this structure. This
structure also includes the settings for the DCI peripheral. This structure can be
initialized using the #define statements provided inthe G726A1ib Si3000.h file.

Appendix A. “Si3000 Codec Configuration” contains detailed information about
configuring the Si3000 registers.

struct g726asi3000
{

int controll; //S513000 Register 1
int control2; //S513000 Register 2
int pLLldivideN1; //S13000 Register 3
int pLLlmultiplyM1l; //S13000 Register 4
int rxgaincontroLl; //S513000 Register 5
int adcvolumecontrol; //513000 Register 6
int dacvolumecontrol; //513000 Register 7
int statusreport; //313000 Register 8
int analogattenuation; //S1i3000 Register 9
char dcimode; //l=master, O=slave
char dciintpri; //DCI interrupt priority
int becgl; //bit clock generator

}i
Setthe #define statementin g726al1ib Si3000.h file for your application. Another
#define statement is provided to create a data structure of type g726as13000:
#define G726ASI3000INIT const g726aSi3000 g726a = G726A;

To make the Speex structure accessible to your source application, simply reference
the G726ASI3000INIT define in your source code, where you define your other data:

int my variable;

G726ASI3000INIT // Si3000 data structure instantiation
// This defines the initialized Si3000
// data structure

© 2007 Microchip Technology Inc. DS70295A-page 25

dsPIC® DSC Speech Coding Solutions User’s Guide

343 G726_decode() Function

The G726_decode () function is used to:

» Decode a block of 256 encoded speech samples.

» Generate an output block of 256 decoded speech samples.

Return Value
None
Parameters

This function has 5 parameters.

Parameter
Data Type
Usage

Parameter
Data Type
Usage

Parameter
Data Type
Usage

Parameter
Size
Usage

Parameter
Size
Usage

codecdata.sampleEncodeOpBuffer
short *

Pointer to encoded speech sample buffer 2.

codecdata.sampleDecodeIpBuffer
short *

Pointer to decoded speech sample buffer 1.

Slen
long
Number of samples per block.

codecdata.rate
short
Output bit-rate.

&decoder state
G726 _state
Instantiation of decoder state.

DS70295A-page 26

© 2007 Microchip Technology Inc.

Application Programming Interface

34.4 G726_decoder_init() Function

The G726 _decoder init () function is used to:

« Instantiate a structure to store the decoder state.
* Initialize the decoder state variables.

Note: This function must be called before G726 decode ().

Return Value

None

Parameters

This function has two parameters.
Parameter sdecoder state

Size G726 _state
Usage Instantiation of decoder state.

Parameter codecdata.rate
Size short
Usage Output bit-rate.

© 2007 Microchip Technology Inc. DS70295A-page 27

dsPIC® DSC Speech Coding Solutions User’s Guide

3.4.5 G726_encode() Function

The G726_encode () function is used to:

* Encodes a block of 256 raw speech samples.

» Generates an output block of 256 encoded speech samples.
Return Value

None

Parameters

This function has five parameters.

Parameter codecdata.sampleOpBuffer
Data Type short *
Usage Pointer to raw speech sample buffer 2.

Parameter codecdata.sampleEncodeIpBuffer
Data Type short *
Usage Pointer to encoded speech sample buffer 1.

Parameter Slen
Data Type long
Usage Number of samples per block.

Parameter codecdata.rate
Size short
Usage Output bit-rate.

Parameter &encoder state
Size G726 _state
Usage Instantiation of encoder state.

DS70295A-page 28 © 2007 Microchip Technology Inc.

Application Programming Interface

3.4.6 G726_encoder_init() Function

The G726 _encoder init () function is used to:

* Instantiates a structure to store the encoder state.
* |nitializes the encoder state variables.

Note: This function must be called before G726 encode ().

Return Value

None

Parameters

This function has two parameters.
Parameter sencoder state

Size G726 _state
Usage Instantiation of encoder state.

Parameter codecdata.rate
Size short
Usage Output bit-rate.

© 2007 Microchip Technology Inc. DS70295A-page 29

dsPIC® DSC Speech Coding Solutions User’s Guide

3.5 SPEEXAPI

3.51 codecsetup Structure

The codecsetup structure is defined in the spx1ib common.h file. This structure is
used to access:

+ user defined raw, encoded and decoded speech buffers (described in detail in the
next two sections)

+ synchronization flags

» speech sample counters used for encoding and decoding

A basic understanding of this structure is required for integrating the library with your
application.

struct codecsetup

{
//Pointer to decoded Speech sample bufferl.
volatile short *sampleDecdIpBuffer;

//Pointer to decoded Speech sample buffer2.
volatile short *sampleDecdOpBuffer;

//Pointer to raw Speech sample bufferl.
volatile short *sampleIpBuffer;

//Pointer to raw Speech sample buffer2.
volatile short *sampleOpBuffer;

//Pointer to encoded speech sample bufferl.
volatile char *sampleEncdIpBuffer;

//Pointer to encoded speech sample buffer2.
volatile char *sampleEncdOpBuffer;

//Flag to indicate ping-pong buffer filled or empty.
volatile char fFramedone;

//Flag to start or stop speech playback.
volatile char fStartPlay;

//Counter to keep count of number of frames of data encoded.
volatile int frameCount;

//Counter to keep count of number of frames of data decoded.
volatile int loadframeCount;

//Counter to keep track of number of samples stored.
volatile int countFill;

//Counter to keep track of number of samples played.
volatile int countLoad;

//Counter to keep track of number of samples encoded.
volatile unsigned long sampleCount;

//Number of encoded samples in each frame.

DS70295A-page 30 © 2007 Microchip Technology Inc.

Application Programming Interface

volatile char numOfencSamplesPerFrame;

//Flag to indicate decoding is done.
volatile char fFrameplayed;

//Flag to indicate encoding is done.
volatile char fEncodedone;

//Number of sets of data for the set ADC Buffer Length.
volatile int setOfADCData;

//Pointer to ADCBUFO register.
volatile unsigned int* AdcBufOPtr;

//Number of bytes in the encoded speech.
unsigned long arraysizeinbytes;

//Flag to indicate VAD enable (VAD disabled by default).
char vad;

//Flag to indicate lostframe (cleared by default) .
char lostFrame;

//Size of the recorded (encoded) speech in number of frames.
long recordSize;

//Used to set Master/Slave in communication applications.
short initiator;

bi

The structure codecdata of type codecsetup is defined for your use in

spxlib common.h file.

typedef struct codecsetup codecsetup
extern codecsetup codecdata;

Note: The spxlib common.h file may be customized for each individual
application, but modifying the codecdata structure is not recommended.

© 2007 Microchip Technology Inc. DS70295A-page 31

dsPIC® DSC Speech Coding Solutions User’s Guide

3.5.2 spxSi3000 Structure

The spxS13000 structure defined in the spx1ib Si3000.h file represents all the
registers of the Si3000 Voiceband Codec. This structure can be used by applications
that use the Si3000 codec as the sampling and/or playback interface for speech. This
structure also includes the settings for the DCI peripheral. This structure can be
initialized using the #define statements provided in the spxlib Si3000.h file.

Appendix A. “Si3000 Codec Configuration” contains detailed information about
configuring the Si3000 registers.

struct spxSi3000
{

int controll; //513000 Register 1
int control2; //S513000 Register 2
int pLLldivideN1; //S13000 Register 3
int pLLlmultiplyM1l; //S13000 Register 4
int rxgaincontroLl; //S513000 Register 5
int adcvolumecontrol; //S13000 Register 6
int dacvolumecontrol; //513000 Register 7
int statusreport; //3513000 Register 8
int analogattenuation; //Si3000 Register 9
char dcimode; //l=master, O=slave
char dciintpri; //DCI interrupt priority
int becgl; //bit clock generator

bi
Set the #define statementin spx1ib Si3000.h file for your application. Another
#define statement is provided to create a data structure of type spxSi3000:

#define SPXSI3000INIT const spxSi3000 speex = SPEEX;

To make the speex structure accessible to your source application, simply reference
the SPxST3000INIT define in your source code, where you define your other data:

int my variable;

SPXSI3000INIT // Si3000 data structure instantiation
// This defines the initialized Si3000
// data structure

3.5.3 libDecoder() Function

The 1ibDecoder () function is used to:

» Decodes a frame of encoded speech (5 or 20 bytes).
» Generates an output of 160 speech integer samples for playback.

Note: 1libDecoder () is the primary decoder function.

Return Value
None
Parameters
None

DS70295A-page 32

© 2007 Microchip Technology Inc.

Application Programming Interface

3.54 libDecoderlnit() Function

The 1libDecoderInit () function initializes the decoder state variables.

Note: This function must be called before 1ibDecoder ().

Return Value
None
Parameters
None

3.5.5 libFullDuplexDecoder() Function

The 1ibFullDuplexDecoder () function is used to:

» Decodes a frame of encoded speech (5 or 20 bytes), typically obtained from a
communication channel.

» Generates an output of 160 speech integer samples for playback.

Note: 1ibFullDuplexDecoder () function is used only in Full-Duplex
applications (applications in which data is both encoded and decoded
concurrently).

Return Value
None
Parameters
None

3.5.6 libEncoder() Function

The 1ibEncoder () function is used to:

* Encodes a frame of 160 speech samples.

» Generates an output frame of encoded speech 5 or 20 bytes long, depending on
the state of codecdata.vad (‘0’ or ‘1’, respectively).

Note: 1ibEncoder ()is the primary encoder function.

Return Value
None
Parameters
None

3.5.7 libEncoderlnit() Function

The 1ibEncoderInit () function is used to:

* Dynamically allocates 1280 bytes of memory from the heap.
+ Initializes the encoder state variables.

Note: This function must be called before 1ibEncoder ().

Return Value

None

Parameters

The libEncoderInit () function has one parameter:

Parameter vad enabled

© 2007 Microchip Technology Inc. DS70295A-page 33

dsPIC® DSC Speech Coding Solutions User’s Guide

Size char

Usage ‘1’ = enable VAD
‘0’ = disable VAD

3.5.8 libEncoderKill() Function

The 1ibEncoderKill () function is used to:

» Frees the 1282 bytes dynamically allocated by 1ibEncoderInit () function.

» Clears the encoder state pointer.
Return Value

None

Parameters

None

DS70295A-page 34

© 2007 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING SOLUTIONS
USER’S GUIDE

MICROCHIP
Chapter 4. Integrating Speech Encoding in your Application

This chapter provides information to help you understand how to integrate the speech
encoding portion of the G.711, G.726A and Speex libraries into your application and
how to build with the library. Topics include:

* Integrating Speech Encoding

+ Data Buffers

» Encoder Initialization

* Encoder Heap Utilization

» Data Sampling Initialization

» Data Sampling

* Encoding

» End Data Sampling

A basic understanding of the encoder and interrupt timing is required to ensure correct
real-time operation of the library.

41 INTEGRATING SPEECH ENCODING

To interface your application with the encoder, you need to be familiar with:

* How the encoder is initialized to work with the input (the codec interface, on-chip
ADC, or any other sampling interface)

* How data is sampled

» How data buffers are used by the encoder

» How the library interacts with its interrupt handlers

4.2 DATA BUFFERS

The encoder uses four data buffers, which you must define. Two of these buffers are
input buffers used to store sampled speech data. The other two buffers are output
buffers used to store encoded speech data. Table 4-1 defines the parameters for these

buffers.
TABLE 4-1: SPEECH ENCODING DATA BUFFER REQUIREMENTS
Library
Parameter
G711 G.726A Speex

Input sampling rate

8 kHz (of 16-bit data)

8 kHz (of 16-bit data)

8 kHz (of 16-bit data)

Encoder frame size

32 msec

32 msec

20 msec

Buffer capacity

256 integer samples

256 integer samples

160 integer samples

When the encoder processes a frame of data, it generates an output array, whose size
depends on the encoding algorithm being used. For example, the output data frame for
Speex may be as large as 20 bytes. In this case, the two output buffers must be large
enough to hold 20 bytes. Example buffer definitions are shown below:

short RawBufl[160], RawBuf2[160];
char EncdBufl([20], EncdBuf2([20];

/* ping-pong input buffers */
/* ping-pong output buffers */

© 2007 Microchip Technology Inc. DS70295A-page 35

dsPIC® DSC Speech Coding Solutions User’s Guide

A pair of each type of buffer is needed since the encoding library ping-pongs, or
alternates, between input/output buffer pairs.

For instance, when sampling begins, the RawBuf1 buffer is populated with speech

data. At the end of each processing interval (20 milliseconds in the case of Speex), a
frame of data is received and RawBuf1 is filled. The library processes RawBufl and
populates EncdBufl, the encoded speech data.

Since the sampling process must be continuous, a second input buffer is needed to
store the data sampled in Frame 1 while Frame 0 is processed by the library. After
RawBuf1l is processed, the output is stored in EncdBufl. Likewise, after RawBuf2 is
processed, the output is stored in EncdBuf2. This process allows you to safely use the
encoded data (for transmission or storage) in EncdBuf1, while EncdBuf? is being
populated (and vice-versa).

Table 4-2 shows how the pairs of input/output buffers are used by the library.

TABLE 4-2: ENCODER BUFFER USAGE (SPEEX EXAMPLE)
Buffer Frame 0 Frame 1 Frame 2 Frame 3 Frame 4
(20 msec) (20 msec) (20 msec) (20 msec) (20 msec)
RawBufl |Filled by ISR |Processed by |Filled by ISR |Processed by |Filled by ISR
library library
RawBuf2 |Idle Filled by ISR | Processed by |Filled by ISR |Processed by
library library
EncdBufl |ldle Loaded with Available for Loaded with Available for
Encoded in1 |user handling |Encoded in1 user handling
EncdBuf?2 |ldle Idle Loaded with Available for Loaded with
Encoded in2 |user handling |Encoded in2
4.3 ENCODER INITIALIZATION
4.3.1 G.711 Encoder Initialization

The G.711 (A-law and p-law) encoder does not need to be initialized. Therefore, there
is no initialization function for this encoder.

43.2

G.726A Encoder Initialization

The G.726A encoder is initialized by calling the G726_encoder init () function with
the desired output bit-rate at which the speech needs to be encoded (since this
encoder supports multiple bit-rates).

The RATE setting is stored in the rate element in the codecdata structure. This
structure is defined in the G726ALib common.h include file. The codecdata.rate
parameter is used as an argument to the G726 _encoder init () function.

The user application also needs to define an instantiation of the G726_state structure
and pass its address as the other argument to the G726 encoder init () function.

DS70295A-page 36

© 2007 Microchip Technology Inc.

Integrating Speech Encoding in your Application

4.3.3 Speex Encoder Initialization

The Speex encoder is initialized by calling the 1ibEncoderInit () function with the
desired Voice Activity Detection (VAD) setting. When VAD is enabled, the library
differentiates between speech and silence (background noise). Non-Speech periods
are encoded with just enough data (5 bytes per frame instead of 20 bytes) to reproduce
the background noise.

The VAD setting is stored in the codecdata. vad structure. This structure is defined
in spxlib common.h and initialized by the CODECDATA #define statement. The
codecdata.vad structure element is used as the argument for libEncoderInit ():

libEncoderInit (codecdata.vad);

When the codecdata.vad structure element is initialized to ‘1’, VAD is enabled.
When codecdata.vad is initialized to ‘0’, VAD is disabled. The VAD feature cannot
be enabled or disabled on a frame-by-frame basis. After 1libEncoderInit () is
called, the VAD setting must not be modified.

44 ENCODER HEAP UTILIZATION

The G.711 and G.726A encoder and decoder algorithms do not use a heap. Therefore
they do not require heap initialization by the user application.

The Speex encoder requires 1282 bytes of scratch RAM. As a benefit to your
application, this memory is allocated dynamically by 1ibEncoderInit ().As aresult,
you recover this memory for your application after the encoder completes running.
When building your application, you must define a heap size of 1282 bytes for the
encoder. If you do not reserve at least 1282 bytes for the heap, your application will
either not build or it will run incorrectly.

The Speex decoder does not require heap initialization.

4.5 DATA SAMPLING INITIALIZATION

After the encoder is initialized by calling 1ibEncoderInit (), the sampling system
(DCI module and Si3000 codec) must be initialized. The appropriate sampling
interfaces are initialized using constants defined in the spx1ib Si3000.h (or
G7111ib Si3000.h or G726Alib Si3000.h) include file. The addresses of the
four data buffers must then be assigned to the corresponding structures of the
codecdata structure, as given in the following Speex example:

codecdata.samplelIpBuffer = RawBufl;
codecdata.sampleOpBuffer = RawBuf2;
EncdBufl;

codecdata.sampleEncdIpBuffer
codecdata.sampleEncdOpBuffer = EncdBuf2;

© 2007 Microchip Technology Inc. DS70295A-page 37

dsPIC® DSC Speech Coding Solutions User’s Guide

46 DATA SAMPLING

Data sampling is typically managed by either the DCI ISR, if you are using an external
Voiceband Codec, or the 12-bit ADC ISR, if you are sampling from the 12-bit ADC.
Each ISR reads speech samples from the respective peripheral and stores the data in
your defined input buffers.

When a complete frame of 256 or 160 speech samples has been received by the ISR,
the ISR should set the codecdata. fFramedone flag to ‘1’ and perform input buffer
management. This process allows new data to be collected by the ISR while the
foreground library processes the newly received frame of speech data.

If you are using the DCI module, DCI ISRs can be configured to execute every

500 psec instead of the speech sample period of 125 usec (1/8 kHz) to minimize the
impact of the ISR on your application. To do this, initialize the DCI with the buffer length
control bits BL.<1: 0> setto ‘11b’. This mode allows four data samples to be buffered
between interrupts, thereby decreasing the interrupt rate by a factor of four.

4.7 ENCODING

4.71 G.711 Encoding

Speech encoding is performed by the alaw compress () or plaw compress ()
function. This function can only be called after the sampling interface has received a
full block of data for processing. When 256 samples of speech data have been received
by the sampling ISR, the codecdata. fBlockdone flag should be set to ‘1’, which
signifies that alaw compress () or plaw compress () can be called.

Since each data frame is 20 msec long, this function must be called 32 times each
second to maintain continuous processing of data. To ensure efficient real-time
performance, the alaw compress () orplaw compress () function must not be run
from an ISR.

Immediately after the alaw compress () or plaw compress () function has been
executed, the user application should swap the two ping-pong output buffer pointers,
clear the codecdata. fBlockdone flag, and set the codecdata. fCompressdone
flag.

At this point, the encoded data can be used (stored and/or transmitted, depending on
the application) by the application. The encoded data will always be pointed by the
codecdata.sampleComprsOpBuffer pointer, and the number of bytes encoded
(256) will be stored in codecdata.numOfSamplesPerFrame. You must access the
encoded data using these structure elements.

4.7.2 G.726A Encoding

Speech encoding is performed by the G726 _encode () function. This function can
only be called after the sampling interface has received a full frame of data for
processing. When 256 samples of speech data have been received by the sampling
ISR, the codecdata. fBlockdone flag should be set to ‘1’, which signifies that
G726 _encode () can be called.

Since each data frame is 32 msec long, this function must be called 32 times each
second to maintain continuous processing of data. To ensure efficient real-time
performance, the G726 _encode () function must not be run from an ISR.

Immediately after the G726 _encode () function has been executed, the user
application should swap the two ping-pong output buffer pointers, clear the
codecdata. fBlockdone flag, and set the codecdata. fEncodedone flag.

DS70295A-page 38

© 2007 Microchip Technology Inc.

Integrating Speech Encoding in your Application

At this point, the encoded data can be used (stored and/or transmitted, depending on
the application) by the application. The encoded data will always be pointed by the
codecdata.sampleEncodeOpBuffer pointer, and the number of bytes encoded
(256) will be stored in codecdata.numOfSamplesPerFrame. You must access the
encoded data using these structure elements.

4.7.3 Speex Encoding

Speech encoding is performed by the 1ibEncoder () function. This function can only
be called after the sampling interface (e.g., DCI) has received a full frame of data for
processing. When 160 samples of speech data have been received by the sampling
ISR, the codecdata. fFramedone flag should be set to ‘1’, which signifies that
libEncoder () can be called.

Since each data frame is 20 msec long, this function must be called 50 times each
second to maintain continuous processing of data. To ensure efficient real-time
performance, the 1ibEncoder () function must not be run from an ISR.

Immediately after the 1ibEncoder () function has been executed, the user
application should swap the two ping-pong output buffer pointers, clear the
codecdata. fFramedone flag, and set the codecdata. fEncodedone flag.

At this point, the encoded data can be used (stored and/or transmitted, depending on
the application) by the application. The encoded data will always be pointed by the
codecdata.sampleEncdOpBuf fer pointer, and the number of bytes encoded (5 or
20 bytes) will be stored in codecdata.numOfencSamplesPerFrame. You must
access the encoded data using these structure elements.

4.8 END DATA SAMPLING

For your convenience, the number of speech frames encoded by the library is saved in
these structure elements:

* codecdata.blockCount for G711 and G.726A
* codecdata.frameCount for Speex

You can use this information to determine when to stop sampling. This can be required
if you are storing the encoded data to memory and you are concerned about exceeding
your application's storage capacity.

The codecdata.recordsize structure element is made available to store the
number of frames you want to encode. Your application can compare
codecdata.frameCount (or codecdata.blockCount) with
codecdata.recordSize to determine when sampling must stop. If you want to use
this feature, you must manually perform this comparison in your application, using the
user-specified RECORDSIZE constant provided in G711 common.h,

G726A common.h Or spxlib common.h:

#define RECORDSIZE 750 // encode 750 frames (15 seconds)

Data sampling can be stopped by disabling the interrupt service routines of the
sampling interface. Following is a sample code sequence (for Speex) listing the steps
that should be performed when sampling is stopped and you want to return the encoder
to an idle state:

libEncoderKill (); /* destroys Encoder state */
codecdata.fFramedone = 0x00; /* clear sampling flag */
codecdata.frameCount 0x00; /* clear number of frames encoded */

The 1ibEncoderKill () function will free the 1282 bytes of scratch memory reserved
by 1ibEncoderInit () from the heap. Your application can use this RAM after
libEncoderKill () runs. For detailed information about heap requirements, see
Section 4.4 “Encoder Heap Utilization”.

© 2007 Microchip Technology Inc. DS70295A-page 39

dsPIC® DSC Speech Coding Solutions User’s Guide

NOTES:

DS70295A-page 40 © 2007 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING SOLUTIONS
USER'’S GUIDE

MICROCHIP
Chapter 5. Integrating Speech Decoding in your Application

This chapter provides information to help you understand how to integrate the speech
decoding portion of the G.711, G.726A and Speex libraries into your application and
how to build with the library. Topics include:

* Integrating Speech Decoding

+ Data Buffers

» Decoder Initialization

* Decoder Heap Utilization

» Decoding the First Frame

» Speech Playback Initialization

» Speech Playback

» Decoding

* Ending Speech Playback

A basic understanding of the decoder and interrupt timing is required to ensure correct
real-time operation of the library.

5.1 INTEGRATING SPEECH DECODING

To interface your application with the decoder, you need to be familiar with:
» How data buffers used by the decoder

* How the decoder is initialized

* How data is played out

» How the library decoder interacts with its interrupt handlers

5.2 DATA BUFFERS

The decoder uses four data buffers, which you must define. Two of these buffers are
input buffers used to store encoded speech data. The other two buffers are output
buffers used to store decoded speech data for playback. Table 5-1 defines the
parameters for these buffers.

TABLE 5-1: SPEECH DECODING DATA BUFFER REQUIREMENTS

Library
Parameter
G711 G.726A Speex
Output sampling rate |8 kHz (of 16-bit data) |8 kHz (of 16-bit data) |8 kHz (of 16-bit data)
Decoder frame size 32 msec 32 msec 20 msec
Output Array 256 integer samples | 256 integer samples | 160 integer samples

For example, the encoded data frame for Speex may be as large as 20 bytes, while the
decoded output will contain 160 samples. Example buffer definitions are shown below:

char EncdBufl[20], EncdBuf2[20]; /* ping-pong 1i/p buffers */
short DecdBufl[160], DecdBuf2[160]; /* ping-pong o/p buffers */

A pair of each type of buffer is needed since the decoding library ping-pongs, or
alternates between input/output buffer pairs.

© 2007 Microchip Technology Inc. DS70295A-page 41

dsPIC® DSC Speech Coding Solutions User’s Guide

5.3

For instance, data is loaded into EncdBuf1 for decoding, and it is processed by the
library. After executing, the decoder populates the DecdBuf1 buffer with speech data.
When output sampling begins, DecdBuf1 is played back through the respective ISR
handler over the course of the next processing interval (20 milliseconds in the case of
Speex).

Since the speech playback process must be continuous, EncdBuf? is filled and
processed by the library, which populates the becdBuf2 buffer, while DecdBuf1 is

being played back.

Likewise, when DecdBuf?2 is being played back, DecdBuf1 is being populated with
new data obtained by decoding the data from EncdBuf1l. The EncdBufl and

EncdBuf2 buffers are also used in an alternating fashion, which allows one buffer to
be optionally pre-loaded as the other input buffer is being processed.

Table 5-2 shows how the pairs of input/output buffers are used by the library.

TABLE 5-2: DECODER BUFFER USAGE (SPEEX EXAMPLE)
Buffer Initialization Frame 0 Frame 1 Frame 2 Frame 3
(20 msec) (20 msec) (20 msec) (20 msec)
EncdBufl |Filled and Idle (available |Filled and Idle (available |Filled and
processed by | for filling) processed by | for filling) processed by
library library library
EncdBuf?2 |Idle (available |Filled and Idle (available |Filled and Idle (available
for filling) processed by | for filling) processed by | for filling)
library library
DecdBufl |Loaded with |Played out by |Loaded with Played out by |Loaded with
Decoded in1 |ISR Decoded in1 ISR Decoded in1
DecdBuf2 |ldle Loaded with Played out by |Loaded with Played out by
Decoded in2 |ISR Decoded in2 |ISR

DECODER INITIALIZATION

5.3.1

The G.711 (A-law and p-law) decoder does not need to be initialized. Therefore there
is no initialization function for this decoder.

5.3.2 G.726A Decoder Initialization

The G.726A decoder is initialized by calling the G726 _decoder init () function with
the desired input bit-rate at which the speech has been encoded (since this decoder
supports multiple bit-rates).

G.711 Decoder Initialization

The RATE setting is stored in the rate element in the codecdata structure. This
structure is defined in the G726ALib common.h include file. The codecdata.rate
parameter is used as an argument to the G726 _decoder init () function.

The user application also needs to define an instantiation of the G726_state structure
and pass its address as the other argument to the G726 decoder init () function.

DS70295A-page 42

© 2007 Microchip Technology Inc.

Integrating Speech Decoding in your Application

5.3.3 Speex Decoder Initialization

The Speex decoder is initialized by calling the 1ibDecoderInit () function. This
function initializes the decoder state variables. The decoder is automatically capable of
processing frames of data that are encoded either with or without VAD. The VAD
selection need not be specified by the user for the decoder to function correctly.

If you will be decoding a speech sample stored in data EEPROM, program Flash or
external Flash memory, you must also initialize any registers (e.g., TBLPAG to access
data EEPROM or program Flash memory) or external devices that are to be used.

The user application needs to define which encoded speech sample stored in memory
will be decoded by the library. For instance, if you used the speech encoding utility to
create four different messages for your application (Message1, Message2, Message3
and Message4) and stored them in program memory, they will be stored in arbitrary
locations along with your application code and the library, as shown in Figure 5-1. All
your messages must be created with a unique array name, which will allow them to be
accessed by the library.

FIGURE 5-1: EXAMPLE OF MULTIPLE MESSAGES STORED IN PROGRAM
MEMORY

0x000000

Application
(with Speech
Decoding
Library)

0x006400
Message1

0x007400

Message2

0x00A000
Message3

0x00C000

Message4

You can specify and refer a list of unique array names in the spxlib common.inc
file provided with the library. This file can be used to define a table with up to ten entries
(depending on the memory available on the specific device being used). Note that there
is a leading underscore in each array name.

.equ TABLENAMEI], _Messagel
.equ TABLENAME2, _Message?2
.equ TABLENAME3, _Message3
.equ TABLENAME4, _Messaged
.equ TABLENAMES, 0 ; not used
.equ TABLENAMEG, 0 ; not used
.equ TABLENAME7, 0 ; not used
.equ TABLENAMES, 0 ; not used
.equ TABLENAMEOY, 0 ; not used
.equ TABLENAME1O, 0 ; not used

© 2007 Microchip Technology Inc. DS70295A-page 43

dsPIC® DSC Speech Coding Solutions User’s Guide

To initiate the playback of one of the above messages from program memory, the user
application can use an index variable to specify which message is to be played back,
and use the corresponding table page and offset values to fetch encoded data from the
appropriate array.

5.4 DECODER HEAP UTILIZATION

None of the three decoders described here requires a heap. All memory used by the
library is pre-allocated.

5.5 DECODING THE FIRST FRAME

Before the output sampling system is initialized, one frame of speech must be first
decoded. If this step is not performed, uninitialized data stored in the decoder's output
buffers will be played back, which can lead to undesirable results.

Decoding begins by first populating an input buffer of the decoder. After the decoder
input data is read from memory, decoding is performed by calling 1ibDecoder () and
then performing buffer management (swapping the decoded data buffer pointers).

5.6 SPEECH PLAYBACK INITIALIZATION

After the decoder is initialized and one frame of speech has been decoded, the output
sampling system (DCI module and Si3000 codec) must be initialized for speech
playback. The appropriate sampling interfaces are initialized using constants defined
in the spxlib Si3000.h (or G7111ib si3000.horG726Alib Si3000 .h)
include file. The addresses of the four data buffers must then be assigned to the
corresponding structures of the codecdata structure, as given in the following Speex
example:

codecdata.sampleEncdIpBuffer = EncdBufl;

codecdata.sampleEncdOpBuffer = EncdBuf2;
codecdata.sampleDecdIpBuffer = DecdBufl;
codecdata.sampleDecdOpBuffer = DecdBuf2;

5.7 SPEECH PLAYBACK

Speech playback is typically managed by the DCI ISR, if you are using an external
Voiceband Codec, or the 12-bit ADC ISR, if you are sampling from the 12-bit ADC.
Each ISR writes decoded speech samples to its respective peripheral from the
decoder's output buffers. When a complete frame of decoded speech (256 or 160
samples) has been played out by the ISR, the ISR should set the

codecdata. fFrameplayed flag to ‘0’, process the output buffer and perform buffer
management. This process allows new decoded data to be played by the ISR while the
foreground library code decodes another frame of speech.

If you are using the DCI module, DCI interrupt service routines can be configured to
execute every 500 psec instead of the speech sample period of 125 psec (1/8 kHz) to
minimize the impact of the ISR on your application. To do this, initialize the DCI with
the buffer length control bits BL<1:0> setto ‘11b’. This mode allows four data
samples to be buffered between interrupts, thereby decreasing the interrupt rate by a
factor of four.

DS70295A-page 44

© 2007 Microchip Technology Inc.

Integrating Speech Decoding in your Application

5.8 DECODING
5.8.1 G.711 Decoding

Before decoding can be performed, the appropriate input buffer must be first loaded
with data. The codecdata.fBlockdone and codecdata. fBlockplayed structure
elements can be used to manage the loading of data into the correct input buffer and
the playback of data from the correct output buffer, as shown in Table 5-3.

TABLE 5-3: BUFFER MANAGEMENT DATA STRUCTURES

Element Function

codecdata.fBlockdone ‘0’ — copy data to input buffer

‘1’ — process data from input buffer

‘0’ — output buffer ready to be read (ready for playback)
‘1’ — output buffer is being read (playback in process)

codecdata.fBlockplayed

If the codecdata.fBlockdone flagis ‘0’ (indicating that data needs to be copied to
a decoder input buffer) and the codecdata.fBlockplayedflagis ‘1’ (indicating that
an output buffer is being played back), a new frame of encoded data can be read into
a decoder input buffer.

Once the new input data has been read and the codecdata. fBlockdone flagis ‘1’,
the alaw expand() or plaw_expand () function is called to perform the decoding.
This function converts the encoded input buffer to a 256 word decoded buffer for speech
playback. To maintain synchronization with the two sets of input/output buffers, decoded
data buffer management must be performed after the codecdata. fBlockplayed
flag is ‘0’. A decoder timeline is shown in Figure 5-2.

FIGURE 5-2: G.711 DECODER TIMELINE EXAMPLE
Frame 1 | Frame 2 I Frame 3
——————————— rP<¢-----"-"-"-"-"-"-"p€¢--"-"-"-"-"--——--—-P

Fif 11 £ 11 £t i
DEE BE i BE i EE §

A The decoder is initialized and the first frame of speech is decoded by calling
alaw_expand() or plaw_expand (). This function generates a buffer of 256
samples, which is stored in one of the output buffers. This output buffer is played back
during Frame 1 after output sampling begins.

(o]

Perform buffer management, set fBlockplayed flag and clear fBlockdone flag.

()

The sampling interface is initialized and speech playback is started.

D New data to decode is read from memory and copied to the appropriate input buffer
(see Table 5-3). The fB1lockdone flag is set to ‘1’ indicating that one encoded frame
of data has been loaded for the decoder.

E alaw expand() or plaw expand() is called to decode the new loaded data.

F The sampling interface ISR transmits the last speech sample of an output buffer,
performs output buffer management and sets the fBlockplayed flag to ‘0.

Note: Speech playback begins at point C and can be performed in the background by
the DCI or Timer ISR. Processes D, E and F repeat each frame for the playback
of additional speech.

The locations of events D and E are arbitrary and occur under application control. They
can occur at any time within each 20 msec frame, as long as the fBlockdone and
fBlockplayed state conditions defined above are satisfied. Your application can

© 2007 Microchip Technology Inc. DS70295A-page 45

dsPIC® DSC Speech Coding Solutions User’s Guide

execute code between points C-D, D-E and E-F. When your application code is
executing, you must always allow the sampling interface ISR to run unimpeded. Failure
to let the ISR run as normal will result in degraded audio playback quality.

5.8.2 G.726A Decoding

Before decoding can be performed, the appropriate input buffer must be first loaded
with data. The codecdata.fBlockdone and codecdata. fBlockplayed structure
elements can be used to manage the loading of data into the correct input buffer and
the playback of data from the correct output buffer, as shown in Table 5-4.

TABLE 5-4: BUFFER MANAGEMENT DATA STRUCTURES

Element Function

codecdata.fBlockdone ‘0’ — copy data to input buffer

‘1’ — process data from input buffer

codecdata.fBlockplayed |‘0’—output buffer ready to be read (ready for playback)
‘1’ — output buffer is being read (playback in process)

A new frame of encoded data can be read into a decoder input buffer if these two
conditions are met:

* The codecdata. fBlockdone flagis ‘0’ (indicating that data needs to be copied
to a decoder input buffer)

* The codecdata.fBlockplayed flagis ‘1’ (indicating that an output buffer is
being played back)

Once the new input data has been read and the codecdata. fBlockdone flagis ‘1’,
the G726_decode () function is called to perform the decoding. This function converts
the encoded input buffer to a 256 word decoded buffer for speech playback. To
maintain synchronization with the two sets of input/output buffers, decoded data buffer
management must be performed after the codecdata.fBlockplayedflagis ‘0’. A
decoder timeline is shown in Figure 5-3.

FIGURE 5-3: G.726A DECODER TIMELINE EXAMPLE
Frame 1 | Frame 2 I Frame 3
——————————— Pt ---"-"-"—-"-"—-"-"-"-"P4¢---——-"-—-——-—-=-=-=—P
32 msec | 32 msec | 32 msec

P 11 £ 11 £ 11 i
NEE BE A EE A RE H

A The decoder is initialized and the first frame of speech is decoded by calling

G726 _decode (). G726 decode () generates a buffer of 256 samples, which is
stored in one of the output buffers. This output buffer is played back during Frame 1
after output sampling begins.

Perform buffer management, set fBlockplayed flag and clear £Blockdone flag.

The sampling interface is initialized and speech playback is started.

O W

D New data to decode is read from memory and copied to the appropriate input buffer
(see Table 5-4). The fBlockdone flag is set to ‘1’, indicating that one encoded frame
of data has been loaded for the decoder.

E G726 _decode () is called to decode the new loaded data.

F The sampling interface ISR transmits the last speech sample of an output buffer,
performs output buffer management and sets fBlockplayed flag to ‘0’.
Note: Speech playback begins at point C and can be performed in the background by

the DCI or Timer ISR. Processes D, E and F repeat each frame for the playback
of additional speech.

DS70295A-page 46 © 2007 Microchip Technology Inc.

Integrating Speech Decoding in your Application

The locations of events D and E are arbitrary and occur under application control. They
can occur at any time within each 20-msec frame, as long as the fBlockdone and
fBlockplayed state conditions defined above are satisfied. Your application can
execute code between points C-D, D-E and E-F. When your application code is
executing, you must always allow the sampling interface ISR to run unimpeded. Failure
to let the ISR run as normal can degrade audio playback quality.

5.8.3 Speex Decoding

Before decoding can be performed, the appropriate input buffer must be first loaded
with data. The codecdata. fFramedone and codecdata. fFrameplayed structure
elements can be used to manage the loading of data into the correct input buffer and
the playback of data from the correct output buffer, as shown in Table 5-5.

TABLE 5-5: BUFFER MANAGEMENT DATA STRUCTURES

Element Function

codecdata.fFramedone ‘0’ — copy data to input buffer

‘1’ — process data from input buffer

codecdata.fFrameplayed |‘0’—output buffer ready to be read (ready for playback)
‘1’ — output buffer is being read (playback in process)

A new frame of encoded data can be read into a decoder input buffer if these two
conditions are met:

* The codecdata. fFramedone flag is ‘0’ (indicating that data needs to be copied
to a decoder input buffer)

* The codecdata. fFrameplayed flag is ‘1’ (indicating that an output buffer is
being played back)

Once the new input data has been read and the codecdata. fFramedone flag is ‘1’,
the 1ibDecoder () function is called to perform the decoding. This function converts
the 5 byte or 20 byte input buffer to a 160 word buffer for speech playback. To maintain
synchronization with the two sets of input/output buffers, decoded data buffer
management must be performed after the codecdata. fFrameplayed flagis ‘0’. A
decoder timeline is shown in Figure 5-4.

© 2007 Microchip Technology Inc. DS70295A-page 47

dsPIC® DSC Speech Coding Solutions User’s Guide

FIGURE 5-4: SPEEX DECODER TIMELINE EXAMPLE
Frame 1 | Frame 2 I Frame 3
——————————— Pt - - - ———— - - - P - - - == —— — = — — P

F1e 1t t 1t £t f
NEE @H i EE -l -

A The decoder is initialized and the first frame of speech is decoded by calling
libDecoder (). libDecoder () generates a buffer of 160 samples, which is stored
in one of the output buffers. This output buffer is played back during Frame 1 after
output sampling begins.

w

Perform buffer management, set fFrameplayed flag and clear fFramedone flag.

()

The sampling interface is initialized and speech playback is started.

D New data to decode is read from memory and copied to the appropriate input buffer
(see Table 5-5). The fFramedone flag is set to ‘1’ indicating that one encoded frame
of data has been loaded for the decoder.

E 1libDecoder () is called to decode the new loaded data.

F The sampling interface ISR transmits the last speech sample of an output buffer,
performs output buffer management and sets fFrameplayed flag to ‘0’.

Note: Speech playback begins at point C and can be performed in the background by
the DCI or Timer ISR. Processes D, E and F repeat each frame for the playback
of additional speech.

The locations of events D and E are arbitrary, and occur under your control. They can
occur at any time within each 20 msec frame, as long as the fFramedone and
fFrameplayed state conditions defined above are satisfied. Your application can
execute code between points C-D, D-E and E-F. When your application code is
executing, you must always allow the sampling interface ISR to run unimpeded. Failure
to let the ISR run as normal can degrade audio playback quality.

5.9 ENDING SPEECH PLAYBACK

For your convenience, the number of bytes decoded by the library is saved in
codecdata.sampleCount. The codecdata.arraysizeinbytes structure
element is made available for you to store the size of your encoded speech record.

In your application, you can compare codecdata.sampleCount with
codecdata.arraysizeinbytes to determine when the entire speech record has
been played and stop the speech playback.

To use this feature, you must manually perform this comparison in your application,
using the provided #define statementin G711 common.h, G726A common.h or
spxlib common.h file:

#define ARRAYSIZEINBYTES 2600 // record is 2600 bytes

Speech playback can be stopped by disabling the ISR of the samping interface.
Following is a sample code sequence (for Speex) listing the steps that should be
performed when sampling is stopped and you want to return the decoder to an idle

state:
codecdata.fFramedone = 0x0;
codecdata.frameCount = 0x0;

codecdata.sampleCount = 0x0;
codecdata.fFrameplayed 0x0;
libStopPlay ();

libDecoderKill () ;

DS70295A-page 48 © 2007 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING SOLUTIONS
USER'’S GUIDE

MICROCHIP
Chapter 6. Speech Encoding Utility

Each of the Speech Encoding/Decoding libraries described in this document includes
a PC-based speech encoding utility that allows you to create your own encoded speech
files on your personal computer. The files created from the speech encoding utility can
then be built into your application for playback on the dsPIC device using the
corresponding Decoder function. This chapter describes how to use the speech
encoding utility. Items discussed include:

» System Requirements

* Overview

» Encoding Speech from a Microphone

* Encoding Speech from a WAV file

» Recommendations for Encoding from a Microphone

» Using the Command Line Decoder

6.1 SYSTEM REQUIREMENTS

* PC running on Windows 95/98/ME/2000/XP or Windows NT 4.0
» Sound card
* Microphone

6.2 OVERVIEW

The Speech Encoding and Decoding functions are designed to optimize computational
performance and minimize RAM usage for speech-based applications embedded in
dsPIC devices. The Speech Encoding Utility allows you to create encoded speech files
from a microphone or from a pre-recorded WAV file, as shown in Figure 6-1, and target
the encoded file for on-chip or off-chip memory.

FIGURE 6-1: OVERVIEW OF SPEECH ENCODING UTILITY

Designated Filename
’))) Speech source file (*.cor *.s)

Encoding raw file (* . raw)

Utility encoded file (* . spx)

© 2007 Microchip Technology Inc. DS70295A-page 49

dsPIC® DSC Speech Coding Solutions User’s Guide

The encoding process creates three output files:

» Source file for your application, in either C (* . c) or assembly (* . s) format

+ Raw uncompressed (8 kHz, 16-bit mono) speech file (* . raw)

* Encoded (*. spx) file

The Speech Encoding Utility allows you to select the type of memory in which to store
your encoded speech file. The target memory selection ensures that the file is encoded
in the correct format for:

* Program Memory

* RAM

» Data EEPROM (only supported for dsPIC30F and Speex Library)

» External Flash (only supported for dsPIC30F and Speex Library)

External Flash memory allows you to store several minutes of speech (one minute of

speech requires 60 Kbytes of memory). It is supported through a dsPIC30F general
purpose |/O port.

The encoded source file must be added to your MPLAB IDE project and built into your
application. The * . raw and * . spx files remain on your PC for your use.

FIGURE 6-2: OVERVIEW OF SPEECH ENCODING UTILITY

Speech source file (*.cor *. s) ®
Encoding - MPLAB™ IDE
Utility

project file (* . mpx)

PC Hard Drive

DS70295A-page 50

© 2007 Microchip Technology Inc.

Speech Encoding Utility

6.3 ENCODING SPEECH FROM A MICROPHONE

To create your own encoded speech file from a microphone, use this procedure.
Select microphone input:

Launch the Windows Master Volume Control (Start>Programs>Accessories>Enter-
tainment>Volume Control). When the Master Volume dialog displays, select
Options>Properties, as shown in Figure 6-3.

Note: The dialogs illustrated here reflect a PC running Windows XP. Your dialogs
may be slightly different to match your operating system.

FIGURE 6-3: MASTER VOLUME CONTROL

[l Master Volume [g [
Dat%:‘ Help

Prperties | Wave SW Synth CD Audio Line In

Exit Balance: Balance: Balance: Balance:

T & 3 9 b -—F 4|6 -F 4 b-F ¢
Yaolume: Volume: Wolume:; Velume: Volume:

| L.l L
L] I
L

[] Mute &l [Mute [] Mute [Mute [Mute
'\l'.l'-\MA;-h'-\ AC-XG WDM Audioﬂ) -

1. Onthe Properties dialog (Figure 6-4), select Adjust volume for Recording and
Microphone, then click OK.

FIGURE 6-4: MASTER VOLUME PROPERTIES DIALOG
Properties

Mocer devics: | yAMAHA AC-XG WDM Audio ||

Adjust valume for

) Flayback

{(+) Recording

Show the following volume controls:

CIa
[stereo Mix
[] cD Audio
[] Line In
Microphone

© 2007 Microchip Technology Inc. DS70295A-page 51

dsPIC® DSC Speech Coding Solutions User’s Guide

2. When the Recording Control dialog displays the microphone volume controls,
adjust the settings for your environment.

FIGURE 6-5: RECORDING CONTROL DIALOG
i} Recording Control Set Microphone volume control E] .
Options Help for your environment

Mono Moe Stereo Mix CD Audio Line In Microphone

Balance: Balance: Balance: Balance: Balance:
B e J a9 -J dE-J
Volume: Volume: Volume: Yolume: Yolume:
L] L}
. L
[+] Select

[select [select [5elect [l 5elect

YAMAHA AC-XGE WDM Audio

Configure Speech Encoding Utility:

1. Launch the speech encoding utility from the desktop icon or quick start menu
set up in the installation process. If you choose not to install the icons, navigate
to the dsPIC DSC Speech Encoding/Decoding Libraries installation folder and
launch the dsPICSpeechRecord.exe file. The program window displays the
current encoder settings, as shown in Figure 6-6.

FIGURE 6-6: SPEECH ENCODING UTILITY

i, dsPIC30F Speech Encoder UKl oy] |

Input Qubpuk Targek Memory Opbions Abouk

00:00
Stop |

Current Encoder Settings

Input: Online Encoding
Output File: Speech.spx
Output Array: speex_data
Target Memory: External Flash
YAD: Digsabled

|Ready

2. From the Input menu, select Mic.

3. From the Qutput menu, select Array Name. When the Array name dialog
displays (Figure 6-7), click OK to accept the default array name (speex_data).

DS70295A-page 52 © 2007 Microchip Technology Inc.

Speech Encoding Utility

FIGURE 6-7: ARRAY NAME DIALOG

Array name

Enter array name

Cancel |

speex_data|

4. From the Qutput menu, select Filename. When the Save As dialog displays,
designate the file name and location.

5. From the Target Memory menu, select the type of memory you want to use (see
Table 6-1).

TABLE 6-1: TARGET MEMORY MENU FUNCTIONS

Memory Type Encoded File Characteristics
Data EEPROM Generate a “C” source file (* . c) to be stored in data EEPROM
External Flash Generate an assembly source file (* . s) to be stored in external Flash
memory
Program Memory | Generate an assembly source file (*. s) to be stored in program
memory
RAM Generate a “C” source file (* . c) to be stored in RAM

6. From the Options menu, decide if you want to use Voice Activity Detection (VAD)
to apply additional compression to voids (silent periods) in the speech file. A
check means this option is selected.

Record your message:
1. Click Record and speak into the microphone. Observe the time being used.

Note: The speech encoding utility has no knowledge about the available memory
in your system. You must ensure that the generated source file will fit within
your application memory constraints. For instance, the data EEPROM on
the dsPIC30F6014A is 4096 bytes, which can store approximately
4 seconds of Speex-encoded speech.

2. When you are finished, click Stop. An Encoding Completed message displays
the properties of the three output files generated, as shown in Figure 6-8.

FIGURE 6-8: ENCODING COMPLETE MESSAGE

%" dsPIC30F Speech Encoder

ir) Encoding Completed Successfully

6000 bytes data file generated: Speech Sample 1.3
Encoded binary file generated: Speech Sample 1.spx
Raw speech file generated: Speech Sample 1.raw

]9

© 2007 Microchip Technology Inc. DS70295A-page 53

dsPIC® DSC Speech Coding Solutions User’s Guide

6.4 ENCODING SPEECH FROM A WAV FILE

To encode speech from a WAV file:

From the Input menu, select Speech File.

Select the output filename and array name from the Qutput menu.
Select the target memory from the Target Memory menu (see Table 6-1).
Enable or disable VAD from the Options menu.

Press the Encode button.

Select the WAV file to encode.

I

Note: You must ensure that the source WAV file has compatible characteristics.
An incompatible format will generate an error message, as shown in
Figure 6-9.

FIGURE 6-9: WAV FILE FORMAT ERROR MESSAGE

dsPIC30F Speech Encoder x|

@ The File should be 8KHz Mana 16kit PCM wave File

If everything is successful, an Encoding Completed message displays the
properties of the three output files generated, as shown in Figure 6-8.

6.5 RECOMMENDATIONS FOR ENCODING FROM A MICROPHONE

When making encoded speech files from a microphone, it is recommended that you
speak as clearly as possible in your natural tone of voice. The encoder is not language
specific, so any language can be used with the speech encoding utility.

A wide variety of low-cost PC microphones are available in the marketplace. If you are
not satisfied with the quality of the playback of the encoded file, try a different
microphone. Testing at Microchip with the LabTec Axis301 headset microphone has
demonstrated good results across a cross section of speakers.

6.6 USING THE COMMAND LINE DECODER

The encoded data available in the C file array is also available in the binary format in
. spx file. The encoded data can be decoded using the decoder application file
(AWsSpeexDec.exe) in the speech encoding utility home directory. The decoded data
will be in raw format. You may want to play a raw file to assess the quality of the Speex
Codec or to use it for the PESQ based MOS evaluation. Because a decoded raw file is
not a WAV file (it does not have headers), you will need an audio editing utility (such
as CoolEdit) to listen to the file.

The decoder usage is:
decoder sourcefilename destinationfilename

The source file is the generated . spx file. The destination file is the raw file produced
as a result of decoding. This file will have the extension that you give it (. raw is
recommended).

DS70295A-page 54

© 2007 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING SOLUTIONS
USER'’S GUIDE

MICROCHIP
Chapter 7. Using Flash Memory for Speech Playback

The Speex Speech Encoding/Decoding Library supports an external memory interface
for dsPIC30F devices, which can be used to store real-time encoded data and/or
play back encoded data. This chapter provides information on the use of external Flash
memory with the library. Items discussed in this chapter include:

* Using External Flash Memory

+ Storing Speech Encoding Utility Data to External Flash Memory

 Building a Loadable Hex File for External Flash Memory

* Programming the Hex File to External Flash Memory

* Running the EFP Utility

» Error Handling

+ Other External Solutions

7.1 USING EXTERNAL FLASH MEMORY

For dsPIC30F devices, the Speex Speech Encoding/Decoding Library supports an
external memory interface, which can be used to store encoded data and/or play back
encoded data. This capability provides a solution for store and playback applications
and memory-constrained, playback-only applications. The library includes Flash
memory drivers for an AMD29F200B memory device. The AMD29F200B is a popular
5.0 volt Flash memory with a memory size of 128K x 16-bit and fast programming time.

Although the dsPIC30F does not have a dedicated external bus interface, you can
interface to external Flash memory through general purpose I/O pins. A reference
design for a 16-bit interface to the AMD29F200B in Word mode is provided in
Appendix B. This reference design features a 2x30 header, which conveniently plugs
into the top of header J19 of the dsPICDEM™ 1.1 Plus Development Board. The
required /O lines for this interface are shown in Table 7-1.

TABLE 7-1: PINS USED FOR EXTERNAL MEMORY INTERFACE

dsPIC30F Pin Application Function

RA6 Control RY/BY pin of the external memory

RA7 Control WE pin of the external memory

RC13 Control LE pin of the control circuitry

RDO0-RD15 Transmit address to the external memory
Receive data from the external memory

RF7 Control CE pin of the external memory

RF8 Control OE pin of the external memory

The reference design provided in Appendix B and the accompanying utility
programming software only supports the lower 64K addresses of AMD29F200B
memory. All 16 bits of PORTD are used to address external memory, and the 17th
address line is tied low. This 64 Kword interface can store approximately two minutes
of compressed speech. If 128 Kwords are required, the 17th address bit can be
implemented from any unused general purpose /O pin.

© 2007 Microchip Technology Inc. DS70295A-page 55

dsPIC® DSC Speech Coding Solutions User’s Guide

711 Encoding to External Flash Memory

In store and playback applications such as voice recorders and answering machines,
data encoded by the library must be stored in a manner that enables it to be played
back later. All dsPIC30F processors feature Flash program memory. Unfortunately, the
on-chip Flash memory is not suitable for storing real-time encoded speech because the
processor is forced to stall for up to two milliseconds while the Flash program memory
is programmed. During this time, the processor is unable to service the DCI or ADC
interrupts to sample incoming speech data. Ultimately, the use of on-chip flash memory
to store speech would result in many lost frames of speech.

A better approach to the real-time storage issue is to use external Flash memory. The
AMD29F200B features a 12 psec programming time (per word), which makes it
suitable for use in the Speex library. Since speech frames are encoded to a maximum
size of 20 bytes, approximately 120 pysec are required to write to the flash every

20 msec. This modest amount of overhead makes the AMD29F200B a good choice for
real-time speech storage.

71.2 Decoding Speech from Flash Memory

External Flash memory can be used as a memory source for decoding speech. The
external Flash memory is useful for store-and-playback applications and playback-only
applications that require more memory than is available on-chip.

Using the external Flash for speech playback is straightforward. The library provides
the ability to read a block of data from Flash memory and use the data as input to the
libDecoder () function. Approximately 20 instruction cycles are required to read one
word from external Flash memory.

7.2 STORING SPEECH ENCODING UTILITY DATA TO EXTERNAL FLASH
MEMORY

The speech encoding utility (see Chapter 6. “Speech Encoding Utility”) can encode
speech data from your personal computer and target it for storage in external Flash
memory. The output of the speech encoding utility is a source file that contains only
encoded speech data. The data in this file must be stored in external Flash memory.

Storing the data file to external Flash memory is a two-step process:

» First, the source file must be built into a hex file so that it can be loaded into Flash
memory.

» Then, a programmer or programming utility must program the hex file into Flash
memory.

7.3 BUILDING A LOADABLE HEX FILE FOR EXTERNAL FLASH MEMORY

The loadable hex file is generated by using the MPLAB C30 Language Tools with an
MPLAB IDE project that contains a special linker script file. A standard dsPIC30F linker
script file (such as p30f6014A.g1d) generates a hex file targeted for the dsPIC30F
memory. The linker script contains information that creates sections for interrupt vector
tables, program memory, data EEPROM and data memory. The memory map of the
AMD29F200B Flash memory contains only one section, so you must use a custom
linker script with the MPLAB C30 Language Tools to generate a hex file targeted for
the AMD29F200B.

The installation directory \Speex PC\ExternalFlashHexMaker contains an
MPLAB IDE project with the custom linker script file external flash.gld. To use
this file, open the MPLAB IDE project titled External Flash.mcp. You will see that

DS70295A-page 56

© 2007 Microchip Technology Inc.

Using Flash Memory for Speech Playback

the linker script (external flash.gld) is already added to this project, so all you
have to do is add the source file created from the speech encoding utility and build the
project. Follow the given below steps:

1. Open the External Flash project from MPLAB IDE.

Note: The default pathis C:\Speex v2.0\Speex PC\PCEU

2. Locate the speech file that you want to load into Flash memory.

3. Add the assembly file (with * . s extension) generated from the speech encoding
utility to the project.

4. Build the project.

After the project is built, a hex file called External Flash.hex will be created. This
file must be next programmed to external Flash memory.

7.4 PROGRAMMING THE HEX FILE TO EXTERNAL FLASH MEMORY

The Speex Library is distributed with a programming utility that runs on the
dsPIC30F device and is capable of in-circuit programming of the external Flash
memory. The External Flash Programmer (EFP) utility is distributed in the

\Speex PC\ExternalFlashProgrammer folder.

The EFP utility can erase and program the AMD29F200B Flash memory. It interfaces
through a UART with a generic terminal program such as Windows HyperTerminaI®.
Programming is performed by sending a hex file to the EFP utility. The EFP utility
parses and processes the hex file and programs the AMD29F200B Flash memory one
word at a time. The EFP utility runs on the dsPICDEM 1.1 Plus Development Board,
but the software can be tailored to run on your own hardware platform.

741 Building the EFP Utility
The EFP utility consists of the files shown in Table 7-2. To build the EFP project, follow
the given below steps:

1. Launch MPLAB IDE and open the efp.mcp project located in the
\Speex PC\ExternalFlashProgrammer folder.

2. From the Project>Build All menu, build the project.

After the EFP utility is built, it is ready to be downloaded to your target for external Flash
memory programming.

© 2007 Microchip Technology Inc. DS70295A-page 57

dsPIC® DSC Speech Coding Solutions User’s Guide

TABLE 7-2:

EFP SOURCE FILES

Filename

Purpose

bin2asc.s

Binary to ASCII conversion function

config.c

dsPIC30F configuration setting definitions

dspic9600.ht

HyperTerminaI® configuration file for 9600 baud

dspicl9200.ht

HyperTerminal configuration file for 19200 baud

flash.c

Flash memory functions

main.c

EFP utility executive functions

parser.c

Hex file parser functions

read.s Flash memory read function

uart.c UART interface functions

emp.h Header file for constants and type definitions
emp_d.h Header file for global data

emp f.h Header file for function prototypes

emp _m.h Header file for macros

7.4.2 Modifying the EFP Utility

By default, the EFP utility interfaces with the terminal program via UARTZ2 operating at
a baud rate of 19200 with external clock and system frequency of 24.576 MIPS. The
maximum baud rate at which you can operate the EFP is 19200. You can run the utility
using a slower rate, but this will lengthen the external Flash programming time. You can
alter the baud rate and system frequency using the following #define statements in
the emp . h header file.
#define BAUD RATE 192

#define CLOCK 61440
#define PLL MULTIPLY 16

/* 19200 baud (in hundreds) */
/* 6.144MHz (in hundreds) */
/* PLL setting */

If you modify the system clock source or PLL setting, you must also modify the
configuration bit setting defined in config. c before rebuilding the project:

_FOSC(CSW_FSCM _OFF & ECIO PLL16);

7.4.3 PC UART Software

Windows HyperTerminal is used to transmit the target hex file to the dsPIC30F,
enabling it to be programmed to external memory. HyperTerminal must be configured
to operate in the following mode:

+ Specified baud rate (19200 baud max)

+ 8 data bits, no parity bits and 1 stop bit

* Flow control off

ANSI emulation:

* Echo typed characters locally
» Force incoming data to 7-bit ASCII

// use EC with x16 PLL

Start the HyperTerminal application and set the session as described above, or double
click one of the provided configuration files (dspic19200.ht or dspic9600.ht) to
set the communication parameters.

Note: Any Windows terminal program that supports ASCIl communication can be
used to interface with the EFP utility. The maximum baud rate is 19200;
however, lower baud rates can be used.

DS70295A-page 58

© 2007 Microchip Technology Inc.

Using Flash Memory for Speech Playback

7.5 RUNNING THE EFP UTILITY

After you build the EFP utility for your system, as described in Section 7.4.1 “Building
the EFP Utility”, you can use it to erase, program and read external flash memory. The
EFP utility distributed with the Speex Library is targeted specifically for the dsPICDEM
1.1 Plus Development Board. You may need to modify the EFP utility if you use your

own hardware platform.

7.51 Erasing the External Flash

The external Flash memory must be erased before it can be programmed. You can
erase external Flash memory from the dsPICDEM 1.1 Plus Development Board by
following this procedure:

1. Press and release switch SW4. LEDs 1-4 begin to flash in unison.
2. Press and release switch SW3.
3. Press and release switch SW2.
4. Press and release switch SW1.

The chip erase cycle begins, lasting 2-5 seconds. LEDs 3-4 turn off while LEDs 1-2
remain on momentarily to indicate that the chip is being erased. When the erase cycle
completes, LEDs 1-2 turn off and LED4 blinks five times.

You can now program the external Flash memory.

If the erase cycle fails, LED4 blinks continuously. To recover from this situation, reset
the dsPIC30F and repeat the erase key sequence.

You can abort an erase cycle after initiating the key sequence by pressing switch SW4
again, while the LEDs are flashing. The EFP utility will return to its idle state. However,
once the erase cycle has started (i.e., after you have pressed SW1 in sequence and
the LEDs have stopped blinking), you must wait for the erase cycle to complete.

Note: No programming or memory verification can take place once the erase
sequence has been started. Always complete or abort the erase sequence
before performing other operations.

7.5.2 Programming the External Flash

To program external Flash memory (after it has been erased), send the target hex file
generated from the ExternalFlashHexMaker project (External Flash.hex)to
the EFP utility using Windows HyperTerminal (or other comparable terminal software).
Follow this process:

1. Start the HyperTerminal application (using the required settings described in
Section 7.4.3 “PC UART Software”).

2. Using the Transfer>Send Text File menu, download the target hex file. As the
download begins, you will see the hex file echoed on the HyperTerminal screen.
Also, LEDs 1-4 on the dsPICDEM board will randomly light as the hex file loads.

3. After the download has successfully completed, LEDs 1-4 turn off and LED3
blinks 5 times.

Note: If the programming has failed, LED3 will blink continuously. To recover from
this situation, reset the dsPIC30F. Programming will fail if the external Flash
memory has not been erased before programming begins.

During programming, no erasing or verifying of memory can take place.
You must wait until programming has completed to perform further
operations.

4. \erify the programming as described in Section 7.5.3 “Verifying the Program-
ming of External Flash”.

© 2007 Microchip Technology Inc. DS70295A-page 59

dsPIC® DSC Speech Coding Solutions User’s Guide

7.5.3 Verifying the Programming of External Flash

It is recommended that you compare the program you load into the external Flash
memory with the contents of the hex source file. Pressing switch SW1 causes the EFP
utility to read the last programmed memory locations (starting from address 0x0), and
transmit them back over the UART to the HyperTerminal.

Use the following procedure to verify a program:

1. From the HyperTerminal Transfer menu select Capture Text.

2. Onthe dsPICDEM 1.1 board, press switch SW1. When the EFP utility detects
the switch action, it reads the last programmed memory locations (starting from
address 0x0) and transmits them via the UART to the HyperTerminal.

3. When the read operation completes, LED1 blinks five times.

4. From the HyperTerminal Transfer menu select Capture Text>Stop to stop
HyperTerminal capture.

5. Compare the data returned from the EFP utility with the contents of the
External Flash.hex file.

Note: If you press switch SW1 before the external Flash memory has been
programmed, or after a dsPIC30F Reset, the first 256 words of external
memory are read and transmitted. This content may not match the
External Flash.hex file.

7.5.4 Reading the External Flash

The EFP utility can be used to read the lower 64 Kwords of AMD29F200B memory. You
may want to use this capability to examine what is stored in the Flash memory.

Use the following procedure to read the external Flash memory and store it in a text file:

1. From the HyperTerminal Transfer menu select Capture Text.

2. Onthe dsPICDEM 1.1 Plus board, press switch SW2. When the EFP detects the
switch action, it reads the lower 64K words (starting from address 0x0) and
transmits them via the UART to the HyperTerminal.

3. When the read operation completes, LED2 blinks five times.

4. From the HyperTerminal Transfer menu select Capture Text>Stop to stop
HyperTerminal capture.

Note: The data transfer will take several minutes to complete. No other operations
can be performed while the EFP ultility is reading external memory.

DS70295A-page 60

© 2007 Microchip Technology Inc.

Using Flash Memory for Speech Playback

7.6 ERROR HANDLING

The EFP utility presently does not recover from Flash memory program or erase errors.
It will continue to process with other errors. If a Flash memory program or erase error
occurs, the EFP utility must be reset. Error handling is summarized in Table 7-3.
TABLE 7-3: EMF ERROR HANDLING

Error Indication

Flash erase failure LED4 toggles (blinks) indefinitely
Flash programming failure LED3 toggles (blinks) indefinitely

Hex record checksum failure | Pin RG15 toggles on each hex record that fails, but processing
continues

UART Receive Error LED1 lights, but processing continues
(framing or overflow)

7.7 OTHER EXTERNAL SOLUTIONS

The Speex Library includes drivers for interfacing with an AMD29F200B Flash
memory. However, you can use any external memory that satisfies your application's
requirements. Serial EEPROMSs, byte-wide nonvolatile memories or other 16-bit
nonvolatile memories can integrate with the library. Important memory selection
considerations are device programming time and device read time.

To use an alternate external memory solution, your own set of drivers must be written
and used in place of the drivers provided with the library. For detailed information on
real-time interfacing with the library, review the guidelines in Chapter 4. “Integrating
Speech Encoding in your Application” and Chapter 5. “Integrating Speech
Decoding in your Application”.

© 2007 Microchip Technology Inc. DS70295A-page 61

dsPIC® DSC Speech Coding Solutions User’s Guide

NOTES:

DS70295A-page 62 © 2007 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING SOLUTIONS
USER'’S GUIDE

MICROCHIP
Chapter 8. Speech Coding Demos

This chapter describes the demo applications included with the G.711, G.726A and
Speex library packages. The intent of these sample applications is to demonstrate how
the libraries can be integrated into some typical application types. These sample
applications also help familiarize users with the library API.

The G.711 and G.726A libraries include three demos: Communication, Loopback and
Playback. The Speex library also includes two demos: Communication and Playback.
Each demo application is provided for both dsPIC30F and dsPIC33F devices. Topics
covered include:

» Communication Demo

* Loopback Demo

» Playback Demo

8.1 COMMUNICATION DEMO

The Communication demo is installed in the following folders:
.\G711 dsPIC30F\demo\Communication
.\G711 dsPIC33F\demo\Communication
.\G726A dsPIC30F\demo\Communication
.\G726A dsPIC33F\demo\Communication
.\Speex dsPIC30F\demo\Communication
.\Speex dsPIC33F\demo\Communication

This demo represents a typical full-duplex communication application (e.g., a pair of
walkie-talkie units). Two dsPICDEM 1.1 Plus development boards (DM300024) are
used as the hardware platform for the demo, with each board representing a node in
the communication link.

The communication channel is modeled using an RS-232 connection between the two
boards. Both UART modules in each dsPIC device are used: one for synchronizing the
sending and receiving of blocks of data, and the other for transferring the actual data.

The on-board Si3000 Voiceband Codec is used as the speech sampling and playback
interface, with the DCI module in each dsPIC device used to communicate with the
codec.

On each dsPIC, the raw speech samples from the microphone, or obtained through the
Si3000 codec and DCI module, are encoded and transmitted to the other dsPIC via the
RS-232 communication link. Encoded data received via the RS-232 link is decoded
and played on the speaker through the DCI module and Si3000 codec. The
communication demo is illustrated in Figure 8-1.

© 2007 Microchip Technology Inc. DS70295A-page 63

dsPIC® DSC Speech Coding Solutions User’s Guide

FIGURE 8-1: COMMUNICATION DEMO

7~ N

/ AN

/ \
/ Encoded \

> g Speex Data Speex >
DE Encoder | | ”| Decoder

|Communication|

y

| Medium |
Speex | \ | Speex | -
¢ |>| l Decoder | Encoded Encoder [€] jﬂ ¢
\ Data /
\ /
dsPIC® DSC #1 N~ dsPIC DSC #1

—_—

To set up and run the G711 Communication demo, perform the steps below. The
G.726A and Speex Communication demos use a similar procedure.

* Openthe G711Communication 30f.mcwor G711Communication 33f.mcw
workspace using MPLAB IDE.

* Inthe G711Lib common.h include file, set the defined value of the INITIATOR
constant to 1. Program one device.

» Setthe INITIATOR constantto 0’, and program the other device.

« Connect the RS-232 Port A of one dsPICDEM 1.1 Plus board to the RS-232
Port A of the other board.

 Similarly, inter-connect Port B of the two boards.
* Connect a microphone to the MIC IN port of each dsPICDEM 1.1 Plus board.
» Connect a speaker to the SPKR OUT port of each dsPICDEM 1.1 Plus board.

* Run the program on both the dsPIC devices. Two people can now use the demo.
Each person can speak into their microphone, and each can hear the other
person speaking on their speaker.

DS70295A-page 64 © 2007 Microchip Technology Inc.

Speech Coding Demos

8.2 LOOPBACKDEMO

The Loopback demo is installed in the following folders:
...\G711 dsPIC30F\demo\Loopback
...\G711 dsPIC33F\demo\Loopback
...\G726A dsPIC30F\demo\Loopback
...\G726A dsPIC33F\demo\Loopback

This demo represents a full-duplex application, but the one not involving
communication. Only one dsPICDEM 1.1 Plus development board is used as the
hardware platform for this demo, and no communication link is needed.

The on-board Si3000 Voiceband Codec is used as the speech sampling and playback
interface, with the DCI module in the dsPIC device used to communicate with the
codec.

The raw speech samples from the microphone, or obtained through the Si3000 codec
and DCI module are encoded. This encoded data is immediately decoded and played
on the speaker through the DCI module and Si3000 codec.

Essentially, the microphone signal is looped back to the speaker, but only after it has
been encoded and decoded. The demo is illustrated in Figure 8-2.

FIGURE 8-2: LOOPBACK DEMO
Speex [:i] >
Decoder
SPEAKER
Encoded
T Data
Speex
Encoder «_ji]
MICROPHONE
dsPIC® DSC

To set up and run the G711 Loopback demo, perform the steps below. The G.726A
Loopback demo uses a similar procedure. There is no Speex Loopback demo at this
time.

* Open the G711Loopback 30f.mcw or G711Loopback 33f.mcw workspace
using MPLAB IDE.

» Connect a microphone to the MIC IN port of the dsPICDEM 1.1 Plus board.

» Connect a speaker to the SPKR OUT port of the dsPICDEM 1.1 Plus board.

* Run the program on the dsPIC device. You can speak into the microphone and
hear your own speech on the speaker. Notice the lack of degradation in the
speech quality even after the encoding-decoding process.

© 2007 Microchip Technology Inc. DS70295A-page 65

dsPIC® DSC Speech Coding Solutions User’s Guide

8.3 PLAYBACK DEMO

The Playback demo is installed in the following folders:
.\G711 dsPIC30F\demo\Playback
.\G711 dsPIC33F\demo\Playback
.\G726A dsPIC30F\demo\Playback
.\G726A dsPIC33F\demo\Playback
.\Speex dsPIC30F\demo\Playback
.\Speex dsPIC33F\demo\Playback

This demo represents a typical simplex application in which only the decoder is used
(e.g., atalking toy or a security alarm). A single dsPICDEM 1.1 Plus development board
is used as the hardware platform for the demo.

The on-board Si3000 Voiceband Codec is used as the speech sampling and playback
interface, with the DCI module in the dsPIC device used to communicate with the
codec. The on-chip Program Flash memory in the dsPIC is used to store pre-encoded
speech recordings.

On the dsPIC, the pre-encoded data stored in Program Flash memory link is decoded
and played on the speaker through the DCI module and Si3000 codec. Users can
generate their own pre-encoded data arrays using the Speech Encoding Utility
included with the library package. The demo is illustrated in Figure 8-3.

FIGURE 8-3: PLAYBACK DEMO
Speex _»ﬂ >
Decoder
A SPEAKER
Encoded
Data
Program
Flash Memory
dsPIC® DSC

To set up and run the G711 Playback demo, perform the steps below. The G.726A and
Speex Playback demos utilize a similar procedure.

* Openthe G711Playback 30f.mcw or G711Playback 33f.mcw workspace
using MPLAB IDE.
» Connect a speaker to the SPKR OUT port of each dsPICDEM 1.1 Plus board.

* Run the program on the dsPIC device. You can hear four successive recorded
messages played on the speaker.

DS70295A-page 66 © 2007 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING SOLUTIONS
USER'’S GUIDE

MICROCHIP
Appendix A. Si3000 Codec Configuration

A.1 INTRODUCTION

All three Speech Encoding/Decoding library packages contain include files and demos
that natively support the Silicon Labs Si3000 Voiceband Codec. When the Si3000
codec is used with the library, it must be initialized. Initialization consists of resetting
the codec and programming its internal control registers. This section discusses the
default configuration used by the library and how you can modify the configuration for
your own system requirements.

Note: For detailed information on the Si3000 codec, refer to the latest version of
Silicon Laboratories Publication # Si3000-DS11 (Si3000 Voiceband
Codec with Microphone/Speaker Drive).

A.2 DEFAULT CONFIGURATION

The Si3000 configuration can be setin the spx1ib Si3000.h header file. The default
configuration is shown in Table A-1.

TABLE A-1: DEFAULT Si3000 CONTROL REGISTER SETTINGS

dsPIC dsPIC
Register Master Slave Comments
Setting Setting
Control 1 0x10 0x10 Speaker drive active
Mic bias selected
Control 2 0x0 0x0 Loopback enabled
High-pass filter enabled
PLL1 Divide N1 0x0 0x2 Slave setting for external clock of
6.144 MHz (for 8 kHz sampling)
PLL1 Multiply M1 0x0 0x13 Slave setting for external clock of
6.144 MHz (for 8 kHz sampling)
RX Gain Control 1 OxEA OxEA Line input muted
Mic gain 10dB
Handset input muted
ADC Volume Control 0x5C 0x5C RX gain 0dB

Line out muted
Handset out muted

DAC Volume Control Ox5F Ox5F TX gain 0dB
Speaker left active
Speaker right active

Status Report 0x0 0x0 Read only register

Analog Attenuation 0x0 0x0 Line out 0dB attenuation
Speaker out 0dB attenuation

By default, the dsPIC30F/33F is the codec clock master, and this is set by the
DCIMODE symbol:

#define DCIMODE 1 // dsPIC30F clock master

© 2007 Microchip Technology Inc. DS70295A-page 67

dsPIC® DSC Speech Coding Solutions User’s Guide

The spxlib common.h file defines several symbols, which must be set correctly for
Si3000 operation when the dsPIC is the clock master. The value assigned to Fcy
automatically sets the BCG1 value of the DCI to produce the correct bit rate clock for
8 kHz sampling. Refer to Table 3-2 for valid system operating frequencies when the
dsPIC is the clock master.

#define Fcy 24576000L // Device instruction rate
#define Fs 8000L // Speech sampling rate in Hz
#define FSCKD (Fs * 256) // DCI frame clock rate
#define BCGl ((Fcy / (2*FSCKD)) - 1) // DCI bit clock control bits

Note: Setting FCy to 4.096 MHz results in a BCG1 value of ‘0’, which disables the
DCI. To run the decoder at 4.096 MHz, the dsPIC30F must be the clock
slave.

A.3 SETTING THE dsPIC DSC AS CLOCK SLAVE

If you want to operate your application using the Si3000 codec at an operating
frequency different than those shown in Table 3-2, you will need to run the dsPIC30F
as the DCI slave. To make the dsPIC30F the codec clock slave, set the DCIMODE
symbol to ‘0.

#define DCIMODE 0 // dsPIC30F clock slave

When the dsPIC is the clock master, the dsPIC provides the frame sync and serial bit
clocks to the Si3000 codec. However, when the dsPIC30F is the clock slave, the
Si3000 generates the frame sync and serial bit clocks, and these signals are now
inputs to the dsPIC.

To use the dsPIC as the clock slave (#define DCIMODE 0) on the dsPICDEM 1.1
Development Board, socket U6 must be populated with a clock oscillator. This clock
oscillator is the clock input to the Si3000's PLL. The values for the PLL1 Divide N1 and
PLL1 Multiply M1 must be set as described in the Si3000 Data Sheet to yield the
required 8 kHz sample rate for your chosen clock oscillator. By default, these registers
are set to work with an external 6.144 MHz clock (see Table A-1).

Note: When using this mode on the dsPICDEM 1.1 Plus board, move jumper J9
to the MASTER setting. This indicates that the Si3000 is the clock master.

A.4 MODIFYING THE CODEC GAIN AND VOLUME CONTROLS

The default Si3000 control register settings used by the library (shown in Table A-1)
may not be suitable for your application requirements. For instance, you may need a
louder output signal for speech playback or a softer input signal for speech encoding.

The following set of #define statements are provided for reference only and are not
contained in the distributed source files. If you wish to use them, you must add these
symbols to the spx1ib Si3000.h header file. These symbols can be defined to set
the DACVOLUMECONTROL in steps of 3 dB:

#define DV 12 DB 0x007F /* 12dB DAC volume gain */
#define DV_9 DB 0x0077 /* 9dB DAC volume gain */
#define DV _6 DB 0x006F /* 6dB DAC volume gain */
#define DV_3 DB 0x0067 /* 3dB DAC volume gain */
#define DV_0 DB 0x005F /* 0dB DAC volume gain */
#define DV_MINUS 3 DB 0x0057 /* -3dB DAC volume gain */
#define DV _MINUS 6 DB 0x004F /* —-6dB DAC volume gain */
#define DV _MINUS 9 DB 0x0047 /* —=9dB DAC volume gain */
#define DV_MINUS 12 DB 0x003F /* =12dB DAC volume gain */

DS70295A-page 68

© 2007 Microchip Technology Inc.

Si3000 Codec Configuration

To set the RXGAINCONTROL (only adjustable in steps of 10 dB), you can define these

symbols:

#define
#define
#define
#define

To set the ADCVOLUMECONTROL

#define
#define
#define
#define
#define
#define
#define
#define
#define

MIC GAIN 30 DB
MIC GAIN 20 DB
MIC GAIN 10 DB
MIC_GAIN 0O DB

AV 12 DB
AV 9 DB
AV 6 DB
AV_3 DB
AV 0 DB
AV _MINUS 3 DB
AV _MINUS 6 DB
AV _MINUS 9 DB
AV _MINUS 12 DB

0x007A
0x0072
0x006A
0x0062

/*
/*
/*
/*

30dB MIC gain */
20dB MIC gain */
10dB MIC gain */
0dB MIC gain */

in steps of 3 dB, you can define these symbols:

0x007C
0x0074
0x006C
0x0064
0x005C
0x0054
0x004cC
0x0044
0x003C

/*
/*
/*
/*
/*
/*
/*
/*
/*

12dB ADC volume gain */
9dB ADC volume gain */
6dB ADC volume gain */
3dB ADC volume gain */
0dB ADC volume gain */
-3dB ADC volume gain */
-6dB ADC volume gain */
-9dB ADC volume gain */
-12dB ADC volume gain */

© 2007 Microchip Technology Inc.

DS70295A-page 69

dsPIC® DSC Speech Coding Solutions User’s Guide

NOTES:

DS70295A-page 70 © 2007 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING SOLUTIONS
USER’S GUIDE

MIcrRocCHIP
Appendix B. External Flash Memory Reference Design

B.1 OVERVIEW

This appendix provides a reference design for a 16-bit interface to the AMD29F200B
Flash memory device for operation in Word mode. This design features a 2x30 header,
which conveniently plugs into the top of header J19 of the dsPICDEM 1.1 Plus
Development Board. The required I/O lines for this interface are shown in Table B-1.

TABLE B-1: PINS USED FOR EXTERNAL MEMORY INTERFACE

dsPIC30F Pin Application Function

RA6 Control RY/BY pin of the external memory

RA7 Control WE pin of the external memory

RC13 Control LE pin of the control circuitry

RDO0-RD15 Transmit address to the external memory
Receive data from the external memory

RF7 Control CE pin of the external memory

RF8 Control OE pin of the external memory

This design and the utility programming software included with the Speex Speech
Encoding/Decoding Library only supports the lower 64K addresses of AMD29F200B
memory. All 16 bits of PORTD are used to address external memory, and the 17th
address line is tied low.

This 64K word interface can store approximately two minutes of compressed speech.
If 128K words are required, the 17th address bit can be implemented from any unused
general purpose /O pin.

See Chapter 7. “Using Flash Memory for Speech Playback” for operational
information.

Note: This circuit is only applicable to the dsPIC30F. It is not applicable to the
dsPIC33F.

© 2007 Microchip Technology Inc. DS70295A-page 71

0z70S ~ §/GIOHYL M\
ANO|

&1 a0 aa

Ly

9l

Sh

4l

£l

el N5z
zn

[49)

Il
el
o
—
4nie

dOSL ™ BOBZAGTAY —

aan
5 %
i sz
N
TN 2
al .
23
" 627105 ~€LS10HYL =
4
& N9
“re @P¥od — G|PHog
3 8liao aq oL
va 810 1
a5 Lhzo za
LWig 2} ico €
cwvh st v vl
s ¥llco sq
Wi £l 190 sa

EXTERNAL MEMORY INTERFACE SCHEMATIC

N A
N 2 =
El ="t -1
s 9957 N
ors
El ey n c
=T
Eieta gz
e TN 28Ty aan
o A Boz
AanA;
®
oL 2<xg en
e
“Ts RSP zdr
° o A <]
<=
SsR 8
PELS]
Ldr
vy
d10N

dsPIC® DSC Speech Coding Solutions User’s Guide

FIGURE B-1

© 2007 Microchip Technology Inc.

DS70295A-page 72

MICROCHIP

dsPIC® DSC SPEECH CODING

SOLUTIONS USER’S GUIDE

Index
A [D7=ToloTo 15 To [49
ADC ..o 15 SPXFI o 62
ADC Interface Data Buffers........ccccvviiniininicic e, 45
Alternate Sampling Interfacec..ccccueue..... 39 End Playback ... 20
Auto Sample Time Initialization ... 46
Buffer LeNgthovveeeeeee e Playback R L EIRAN 49
Conversion Trigger P]ayback Initialization..............ccoooiiiinnn, 48
INAHZING ..o TIMING o 50
Interrupt Service Routing...........c.ccceevveveriennnne 43 Decoding ApplCation ..., ”
ADC/PWM Interface Reference Design................. 89 MOdifYiNG...ceeeieieeeiie e 81
ADCA2 oo 20 OPHMIZING .cvvvvvieii s 81
ADCT2 SHUCHUIE ..ot 20 Decoding DEMOcucoiviiiriiiriiie, 8
Allowable Execution Speeds...........cccovveerucurireenes. 15 Documentation
ANalog INterfaCeooveveeeeeeeeeeceeeeeeeeeee e 8 CONVENLIONS ..o 3
Application Code Sample Layout ..o 1
Decoder ... 93 E
!Engoder """"""" e % Encoder Heap ..o 36
Application Programming Interface..........ccccccccee... 15 .
Archive Files 15 ENCOdiNg ...ccooiiiiiiiiiiee e 37
.. Data Buffers ... a4
B Data Samplingccceeeeieiiieee e 37
Buffer Management Data Structures........covveveviiii. 49 Initializationcccoeeeeiiiiiieeee e, 36
Build Encoding Application.........cccccceeviiiinieniiiieeeee 71
DECOTEN ... 54 MOGIYING. ..oocvvvveii 7
ENCOAET ... 44 OPHMIZING oo 75
Business of Microchipcccoocvvicniicniiciniicicies 5 Encoding DEmMO.........oovvvvviiiiii, 2
External Flash Memory Reference Design 87
c External Flash Programming Utility...............c..c....... 66
CELP ENCOdiNgG....ccooveiiiiieeiiie e 7 BUIldiNgoeeiiiiiece e 66
Codec Interface........cccoeveeeiiiee i 15 Erasing Flashcoooiiiiiiiie e 68
COMPIESSION ...ttt seeee e 7 Error Handling..........oooiiiiiiii e 70
Customer Notification Service..........cccccovvverviieneenn. 5 Programming Flash...........ccccooiiiiniiiiineeenee. 69
CuStOMEr SUPPOIt.....ccoviiiiiiiiieiiee e 6 Used with UARToooiiiiieeeeee e 67
D F
Data Buffers Flash MemOrycccoooiiiiiiiiieie e 63
DecodiNg.....c.vveiiiiiiieee e 45 Decoding From ... 64
ENCOding......cooviiiiiiiiiciece e 35 ENncoding TO.....coooiiiiiiiiieee e 64
Data Sampling «.....cccvevviireiiee e 37 Encoding Utilitycoooiiiiiiiiiiee 65
Data Structures HEX File ..o 65
CSPXADC2.. e 20 INterfaceooovvueiieeccee e 63
_SPXPWM Lo 20
G
COAECSELUDveeieiiie it 19
O CCIEc101010) DO 18 General Technical Supportccccoeiiiiiieeeieeeee. 5
DCI H
As Clock Master.........ccocveiiiiiicniciic e 15 Heap
AS SIBVE . 16 DeCodercoooviiiiiiic e 47
DCIMOAUIE ... 15
Decoder Heap........oooooo 47 Encod.er ... 36
Host Requirementscccoooieiiiiiiiiecieeeeee 11

© 2007 Microchip Technology Inc.

DS70295A-page 73

Index

|

Initialization
DeCodiNg...cccciiiiiiiiiie e 46
ENCOAEr ..o 36
Speech Playbackccocceviiiinniiiiee e 48

Internet Address........occveiiieeiiiiieie e 5

Interrupt Service Routine
ADC Interfacecccoevveeiiiiiiieeee e 43
DCliei e 37
PWM Time Base.........cccooeeeviiieiiieciieeee e 53

L

Library Functions
DADCAZINIE() vvveeveeireeieeieieieeeee e 21
liIbADC12StartSampling().......cccerveereeeereeneennnn. 22
lIbADC12StopSampling()cvvveeevveeinveeeniiiennnns 22
lIDADCFIlIBUFfEr()cveeeesiiieiieeeeeee e 21
libarrayFillDecoderExternalFlash().................... 23
libarrayFillDecoderlnputEEPROM().................. 23
libarrayFillDecoderlnputPM()cccccoveveeiiinene 23
libBufManagerDecoder().......c.cccuvvvvermeeinineennns 24
libBufManagerEncoder().........cccoouvvervieennneennns 24
HDDECOAEN() ..vveeeeieeiieee et 24
libDecoderINit() ...cc.coeoeeerieeeeeiiee e 25
0] = g Tt o LY) IO 25
HbENCOErInit()......ceeoveeeieeeeriie e 25
HbENCOAErKill()...cveeeeeeieeiie e 26
bEXtFIashErase()cccooeeeviiieiiieiiiiecesiieee 26
libExtFlashFailure().......ccoovivienienieiiicnieeen 26
lIbExtFlashReset()cccoooveeeviiiiiiiieeeeee 27
HDEXtFIaShWIite() «...oovveeeeeeee e 27
EOPWMINIE() +eoveeeeeerireeeee e 28
lIbPWMLoadSamples()ccovvereeeermieeiiiiennas 28
lIbPWMStartSampling()........ccovveeeveeiinreeeniieennns 28
libRawBufManager()ccccuvverereeiiinieeiiiees 29
liIbRwWNdOpRawBUfPtr().........ccovviiiiiiiaiiieene 29
[IbSIBO00DCIFIlI() ..t 29
bSIB000INIE() .veeeeeeeveeeieeee e 30
[ibSi3000L0AdDCI() ..eovvveeiveeiiieiee e 30
libSi3000SIaveFillDCI() ..cccvveeeveereeeieeriieeieeieeen 31
libSi3000SlaveLoadDCI()cceeveeriveeriienieeaneen 31
libSi3000StartSampling() ..-.eccvveereeeeiiieeenieeenne 32
libSi3000StopSampling()ccvvvvereeeerieeeanieennne 32
bStartPlay()ocoveeeeeeeeieeeee e 33
bStartPWM() ..cooeeeiieeieeeee e 33
11035] (o] o] odF= 1V R UR 33
DStOPPWM()...ceieeeeiieeieeiee e 34
DTDIPrSet()..ceeeveerieiiecceeeee e 34
lIbTBIPtrSetEEPROM() ...ovvvvevieeeieiec e 34

M

Memory Requirements...........cccoviiiiiiiiiiiiiee e, 16

Microchip Internet Web Site...........cccooveviiieeiiiiene. 5

(0]

Output Rate.......c..oeeeiiiiiiieie e 8

P
Playback Initialization.............cccoccveiiieeiiiiieiiee 48
Product SUPPOrtcccvvieieeiceee e 5
PWM FrequenCyccceeeeviiiiiiieiieiiiiceee e 52
PWM Playback Interface...........ccccceevveereiieencienns 51
Default Setupooeeeiiiiii e 51
FrequenCycoooviiiiiiiieeee e 52
INItIAlIZING .o 51
PWM Structure.........ccveviieeieeeeee e 20
R
Recommended Readingccccooviiiieiiiiiiiiie s 4
Requirements
Decoder MIPS.........oooeieeeeee e 17
Development TOOISccccvvvriieeiiiiciie e 11
dSPIC30F DEVICESccovveeiiieeeiieie e 9
Encoder MIPSoooiiiie e 17
Host System........occiviii e 9,11
MEMOTY ... 16
RESOUICESeiiiiiiiiiie e 9
SOfWArE ... 17
System Frequencyccccvvevieeiiee e 15
S
Sample Application
Decoding.....cueeiiiiiiiiie e 54,77
Encodingccoooiiiiiiiiii 44,71
Sample Decoding Applicationccccccceviiiveineenn. 54
Sample Ratecc.ueeeviiiieiiee e 8
Setup Wizard........ccoovviiiiieeee e 11
Si3000 Codec Configurationccccceeviiieeeininenns 83
Speech Encoding
From Microphone.........cceveveeeeeeiieieieeeeeeecees 59
From Wav File......ccccoooiiiiiiii e 62
Recommendations............ccccoviiiiieeiiiniiieeeee 62
Speech Encoding Utilitycccooveiiiiiiiniiiinen. 8,57
ConfigUING....ccocuvieiiie e 60
Installation ..o 57
Recording.......cccoovuveeiiiiiiiiiie e 61
Speech Playbackccoocoviiiiiiiee e 49
ENding ..o 50
SPEEX COAEN ... 7
U
Uninstall Procedure...........ccoovviiiiieinieceieceieee 13
\'
Voice Activity Detection...........cccevviieiiieiniec e 8
W
Warranty Registrationccccccoiiiiiiiiiiieiees 4
WWW AAAreSScovvieeiiiieiieie e 5

© 2007 Microchip Technology Inc.

DS70295A-page 74

Index

NOTES:

© 2007 Microchip Technology Inc. DS70295A-page 75

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, Ml
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

Kokomo, IN

Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara

Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada

Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong

Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200

Fax: 852-2401-3431
China - Nanjing

Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao

Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Wuhan

Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian

Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham

Tel: 44-118-921-5869
Fax: 44-118-921-5820

09/10/07

DS70295A-page 76

© 2007 Microchip Technology Inc.

	Chapter 1. Overview
	1.1 Overview
	1.1.1 G.711 Speech Encoding/Decoding Library
	1.1.2 G.726A Speech Encoding/Decoding Library
	Table 1-1: G.726A Library Bit Rates and Compression Ratios

	1.1.3 Speex Speech Encoding/Decoding Library

	1.2 Other Features
	Figure 1-1: Typical Speech EnCoding/Decoding Application

	Chapter 2. Installation
	2.1 Installation Procedure
	2.2 G.711 Library Files
	2.2.1 G711_dsPIC30F
	2.2.1.1 demo
	2.2.1.2 Inc
	2.2.1.3 Src

	2.2.2 G711_dsPIC33F
	2.2.2.1 demo
	2.2.2.2 Inc
	2.2.2.3 Src

	2.2.3 G711_PC

	2.3 G.726A Library Files
	2.3.1 G726A_dsPIC30F
	2.3.1.1 demo
	2.3.1.2 Inc
	2.3.1.3 Lib

	2.3.2 G726A_dsPIC33F
	2.3.2.1 demo
	2.3.2.2 Inc
	2.3.2.3 Lib

	2.3.3 G726A_PC

	2.4 Speex Library Files
	2.4.1 Speex_dsPIC30F
	2.4.1.1 demo
	2.4.1.2 Inc
	2.4.1.3 Lib

	2.4.2 Speex_dsPIC33F
	2.4.2.1 demo
	2.4.2.2 Inc
	2.4.2.3 Lib

	2.4.3 Speex_PC
	2.4.3.1 ExternalFlashHexMaker
	2.4.3.2 ExternalFlashProgrammer
	2.4.3.3 PCEU

	Chapter 3. Application Programming Interface
	3.1 Application Programming Interface
	Table 3-1: dsPIC DSC Speech Encoding/Decoding Libraries API

	3.2 System Requirements
	3.2.1 Device Frequency Requirements
	Table 3-2: Allowed CLOCK Speeds in DCI Master Mode

	3.2.2 MIPS and Memory Requirements
	Table 3-3: MIPS, Flash and RAM REQUIREMENTS

	3.2.3 Software Requirements

	3.3 G.711 API
	3.3.1 codecsetup Structure
	3.3.2 g711Si3000 Structure
	3.3.3 alaw_compress() / mlaw_compress() Function
	3.3.4 alaw_expand() / mlaw_expand() Function

	3.4 G.726A API
	3.4.1 codecsetup Structure
	3.4.2 g726aSi3000 Structure
	3.4.3 G726_decode() Function
	3.4.4 G726_decoder_init() Function
	3.4.5 G726_encode() Function
	3.4.6 G726_encoder_init() Function

	3.5 Speex API
	3.5.1 codecsetup Structure
	3.5.2 spxSi3000 Structure
	3.5.3 libDecoder() Function
	3.5.4 libDecoderInit() Function
	3.5.5 libFullDuplexDecoder() Function
	3.5.6 libEncoder() Function
	3.5.7 libEncoderInit() Function
	3.5.8 libEncoderKill() Function

	Chapter 4. Integrating Speech Encoding in your Application
	4.1 Integrating Speech Encoding
	4.2 Data Buffers
	Table 4-1: Speech Encoding Data Buffer Requirements
	Table 4-2: Encoder Buffer Usage (Speex Example)

	4.3 Encoder Initialization
	4.3.1 G.711 Encoder Initialization
	4.3.2 G.726A Encoder Initialization
	4.3.3 Speex Encoder Initialization

	4.4 Encoder Heap Utilization
	4.5 Data Sampling Initialization
	4.6 Data Sampling
	4.7 Encoding
	4.7.1 G.711 Encoding
	4.7.2 G.726A Encoding
	4.7.3 Speex Encoding

	4.8 End Data Sampling
	Chapter 5. Integrating Speech Decoding in your Application
	5.1 Integrating Speech Decoding
	5.2 Data Buffers
	Table 5-1: Speech Decoding Data Buffer Requirements
	Table 5-2: Decoder Buffer Usage (Speex Example)

	5.3 Decoder Initialization
	5.3.1 G.711 Decoder Initialization
	5.3.2 G.726A Decoder Initialization
	5.3.3 Speex Decoder Initialization
	Figure 5-1: Example of multiple messages stored in Program Memory

	5.4 Decoder Heap Utilization
	5.5 Decoding the First Frame
	5.6 Speech Playback Initialization
	5.7 Speech Playback
	5.8 Decoding
	5.8.1 G.711 Decoding
	Table 5-3: Buffer Management Data Structures
	Figure 5-2: G.711 Decoder Timeline Example

	5.8.2 G.726A Decoding
	Table 5-4: Buffer Management Data Structures
	Figure 5-3: G.726A Decoder Timeline Example

	5.8.3 Speex Decoding
	Table 5-5: Buffer Management Data Structures
	Figure 5-4: Speex Decoder Timeline Example

	5.9 Ending Speech Playback
	Chapter 6. Speech Encoding Utility
	6.1 System Requirements
	6.2 Overview
	Figure 6-1: Overview of Speech Encoding Utility
	Figure 6-2: Overview of Speech Encoding Utility

	6.3 Encoding Speech from a Microphone
	Figure 6-3: Master Volume Control
	Figure 6-4: Master Volume Properties Dialog
	Figure 6-5: Recording Control Dialog
	Figure 6-6: Speech Encoding Utility
	Figure 6-7: Array Name Dialog
	Table 6-1: Target Memory Menu Functions
	Figure 6-8: Encoding Complete Message

	6.4 Encoding Speech from a WAV file
	Figure 6-9: WAV File Format Error Message

	6.5 Recommendations for Encoding from a Microphone
	6.6 Using the Command Line Decoder
	Chapter 7. Using Flash Memory for Speech Playback
	7.1 Using External Flash Memory
	Table 7-1: Pins Used for External Memory Interface
	7.1.1 Encoding to External Flash Memory
	7.1.2 Decoding Speech from Flash Memory

	7.2 Storing Speech Encoding Utility Data to External Flash Memory
	7.3 Building a Loadable Hex File for External Flash Memory
	7.4 Programming the Hex File to External Flash Memory
	7.4.1 Building the EFP Utility
	Table 7-2: EFP Source Files

	7.4.2 Modifying the EFP Utility
	7.4.3 PC UART Software

	7.5 Running the EFP Utility
	7.5.1 Erasing the External Flash
	7.5.2 Programming the External Flash
	7.5.3 Verifying the Programming of External Flash
	7.5.4 Reading the External Flash

	7.6 Error Handling
	Table 7-3: EMF Error Handling

	7.7 Other External Solutions
	Chapter 8. Speech Coding Demos
	8.1 Communication Demo
	Figure 8-1: Communication Demo

	8.2 Loopback Demo
	Figure 8-2: Loopback Demo

	8.3 Playback Demo
	Figure 8-3: Playback Demo

	Appendix A. Si3000 Codec Configuration
	A.1 Introduction
	A.2 Default Configuration
	Table A-1: Default Si3000 Control Register Settings

	A.3 Setting the dsPIC DSC as Clock Slave
	A.4 Modifying the Codec Gain and Volume Controls
	Appendix B. External Flash Memory Reference Design
	B.1 Overview
	Table B-1: Pins Used for External Memory Interface
	Figure B-1: External Memory Interface Schematic

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /3Of9Barcode
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /Arnprior
 /Batang
 /Baveuse
 /Berylium
 /Berylium-BoldItalic
 /BlueHighway
 /BlueHighway-Bold
 /BlueHighwayCondensed
 /BlueHighwayDType
 /BlueHighwayLinocut
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BurnstownDam
 /CarbonBlock
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CreditValley
 /CreditValley-Bold
 /CreditValley-BoldItalic
 /CreditValley-Italic
 /DSPIC
 /EarwigFactory
 /EstrangeloEdessa
 /FranklinGothic-Book
 /FranklinGothic-BookItal
 /FranklinGothic-BookOblique
 /FranklinGothic-Demi
 /FranklinGothic-DemiItal
 /FranklinGothic-DemiOblique
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItal
 /FranklinGothic-HeavyOblique
 /FranklinGothic-Medium
 /FranklinGothic-MediumItal
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HurryUp
 /Impact
 /INCONTROL
 /Kartika
 /Kredit
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /Map-Symbols
 /MICROCHIP
 /MicrosoftSansSerif
 /MinyaNouvelle
 /MinyaNouvelleBold
 /MinyaNouvelleBoldItalic
 /MinyaNouvelleItalic
 /MonotypeCorsiva
 /MonotypeSorts
 /MS-Mincho
 /MT-Extra
 /MVBoli
 /Neuropol
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PlanetBenson2
 /Pupcat
 /Raavi
 /Shruti
 /SimSun
 /Stereofidelic
 /SybilGreen
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Teen
 /Teen-Bold
 /Teen-BoldItalic
 /Teen-Italic
 /TeenLight
 /TeenLight-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /VelvendaCooler
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Waker
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

